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Continuum Gross-Neveu models

•Continuous symmetry broken - Goldstone modes
•QCD-like (NJL model)
•Strongly correlated fermion system
•No trivial fixed point 2<d<4 for small Nf

•BCS superfluid
•QCD phase transition at finite temperature and 
density
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Lattice GN models: Z2 and U(1) symmetries
Examples with staggered fermions
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lem. However, if an alternate approach can be found where
the sign problem disappears, one can of course say the prob-
lem never suffered from a sign problem to begin with. On the
other hand, if this alternate approach was not known earlier,
the new approach can be considered as a solution to the sign
problem present in the other method. This is what we mean
when we say “solutions to unsolved sign problems”. It must
be noted that all sign problems are problems in exactly this
sense. Once a solution is found there is no longer a problem.
It is of course likely that some problems may remain unsolved
[20].

We consider lattice GN models containing N flavors of
massless staggered fermions with either a Z

2

or a U(1) chiral
symmetry [15]. While we work in three space-time dimen-
sions, our results can easily be extended to higher dimensions.
Although in three dimensions the symmetries we refer to are a
part of a flavor symmetry, they are often loosely called chiral
symmetries in the literature. The Z

2

models with odd N and
all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach.
Here we show that the sign problems disappear in the fermion
bag approach. Our paper is organized as follows. In section
2 we review the auxiliary field approach to lattice GN models
with both Z

2

and U(1) chiral symmetries and discuss how the
sign problems arise. In section 3 we discuss the severity of
the sign problems. In section 4 we discuss the fermion bag
approach and show that sign problems do not arise. Section 5
contains our conclusions.

II. AUXILIARY FIELD APPROACH

Lattice GN models are formulated in the auxiliary field ap-
proach through the action
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fields of flavor i = 1, 2.., N at the lattice site x. The ex-
plicit form of the auxiliary field action S
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depends on the
GN model and will be discussed below. The matrix D[
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where ¯

�(x) is a function of the auxiliary fields as defined be-
low and D
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is the free staggered fermion matrix [21],
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Since we work in three dimensions, ↵ labels the three di-
rections, ⌘
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·x)
, ⇣
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= (0, 0, 0), ⇣

2

= (1, 0, 0),
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3

= (1, 1, 0) are the staggered fermion phase factors and m

is the bare fermion mass. We assume anti-periodic boundary
conditions in all directions and denote the lattice volume by
V = L

3.

Following [15], we define the auxiliary fields on dual sites
x̃. The model with a Z

2

chiral symmetry is defined through a
single real auxiliary field �(x̃), such that
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while the model with a U(1) chiral symmetry requires two
real auxiliary fields �(x̃) and ⇡(x̃), such that
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where "(x) is the parity of a lattice site (1 on even sites and
�1 on odd sites). In the above expressions, the set of nearest
dual sites x̃ surrounding the fixed lattice site x is denoted as
hx̃, xi (see Fig. 1). In this work we only consider these two
classes of models.
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by hx̃, xi
(see right figure).

It is easy to verify that S

GN

is invariant under U(N)

flavor transformations. When m = 0, additional chi-
ral symmetries emerge. The Z

2

model is invariant under
�
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(x) ! "(x)�
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i

(x) ! ��

i
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U(1) chiral symmetry �
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, �(x̃) ! �(x̃) cos ✓ + ⇡(x̃) sin ✓, ⇡(x̃) !
⇡(x̃) cos ✓��(x̃) sin ✓. The models contain a quantum critical
point (QCP) separating a chirally symmetric phase (at small
couplings) from a phase where the chiral symmetry is spon-
taneously broken (at large couplings). The symmetries that
govern the QCP needs proper analysis due to fermion dou-
bling. Without such an analysis it is difficult to establish the
continuum field theory that emerges at the critical point [18].

In the traditional MC approach, one integrates over the
Grassmann fields and writes the partition function of the GN
models as
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by hx̃, xi
(see right figure).
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by hx̃, xi
(see right figure).
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
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(see right figure).
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problem present in the other method. This is what we mean
when we say “solutions to unsolved sign problems”. It must
be noted that all sign problems are problems in exactly this
sense. Once a solution is found there is no longer a problem.
It is of course likely that some problems may remain unsolved
[20].

We consider lattice GN models containing N flavors of
massless staggered fermions with either a Z
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or a U(1) chiral
symmetry [15]. While we work in three space-time dimen-
sions, our results can easily be extended to higher dimensions.
Although in three dimensions the symmetries we refer to are a
part of a flavor symmetry, they are often loosely called chiral
symmetries in the literature. The Z

2

models with odd N and
all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach.
Here we show that the sign problems disappear in the fermion
bag approach. Our paper is organized as follows. In section
2 we review the auxiliary field approach to lattice GN models
with both Z

2

and U(1) chiral symmetries and discuss how the
sign problems arise. In section 3 we discuss the severity of
the sign problems. In section 4 we discuss the fermion bag
approach and show that sign problems do not arise. Section 5
contains our conclusions.
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is the bare fermion mass. We assume anti-periodic boundary
conditions in all directions and denote the lattice volume by
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x̃. The model with a Z
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chiral symmetry is defined through a
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�1 on odd sites). In the above expressions, the set of nearest
dual sites x̃ surrounding the fixed lattice site x is denoted as
hx̃, xi (see Fig. 1). In this work we only consider these two
classes of models.
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be noted that all sign problems are problems in exactly this
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be noted that all sign problems are problems in exactly this
sense. Once a solution is found there is no longer a problem.
It is of course likely that some problems may remain unsolved
[20].

We consider lattice GN models containing N flavors of
massless staggered fermions with either a Z

2

or a U(1) chiral
symmetry [15]. While we work in three space-time dimen-
sions, our results can easily be extended to higher dimensions.
Although in three dimensions the symmetries we refer to are a
part of a flavor symmetry, they are often loosely called chiral
symmetries in the literature. The Z

2

models with odd N and
all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach.
Here we show that the sign problems disappear in the fermion
bag approach. Our paper is organized as follows. In section
2 we review the auxiliary field approach to lattice GN models
with both Z

2

and U(1) chiral symmetries and discuss how the
sign problems arise. In section 3 we discuss the severity of
the sign problems. In section 4 we discuss the fermion bag
approach and show that sign problems do not arise. Section 5
contains our conclusions.

II. AUXILIARY FIELD APPROACH

Lattice GN models are formulated in the auxiliary field ap-
proach through the action

S

GN

=

X

x,y,i

�

i

(x)(D[

¯

�])

x,y

�

i

(y) + S

AF

(1)

where �

i

(x),�

i

(x) denote the Grassmann valued fermion
fields of flavor i = 1, 2.., N at the lattice site x. The ex-
plicit form of the auxiliary field action S

AF

depends on the
GN model and will be discussed below. The matrix D[

¯

�] is
defined by

�

D[

¯

�]

�

xy

= D

xy

+ �

xy

¯

�(x), (2)

where ¯

�(x) is a function of the auxiliary fields as defined be-
low and D

x,y

is the free staggered fermion matrix [21],

D

x,y

= m�

x,y

+

X

↵=1,2,3

⌘

x,↵

2

[�

x+↵,y

� �

x,y+↵

] . (3)

Since we work in three dimensions, ↵ labels the three di-
rections, ⌘

x,↵

= e

(i⇡⇣

a

·x)
, ⇣

1

= (0, 0, 0), ⇣

2

= (1, 0, 0),
⇣

3

= (1, 1, 0) are the staggered fermion phase factors and m

is the bare fermion mass. We assume anti-periodic boundary
conditions in all directions and denote the lattice volume by
V = L

3.

Following [15], we define the auxiliary fields on dual sites
x̃. The model with a Z

2

chiral symmetry is defined through a
single real auxiliary field �(x̃), such that

S

AF

[�] =

N

2g

2

X

x̃

�

2

(x̃), (4a)

¯

�(x) =

1

8

X

hx̃,xi

�(x̃) (4b)

while the model with a U(1) chiral symmetry requires two
real auxiliary fields �(x̃) and ⇡(x̃), such that

S

AF

[�,⇡] =

N

4g

2

X

x̃
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2

(x̃) + ⇡

2

(x̃)
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, (5a)

¯

�(x) =

1

8

X

hx̃,xi

⇣

�(x̃) + i"(x)⇡(x̃)

⌘

, (5b)

where "(x) is the parity of a lattice site (1 on even sites and
�1 on odd sites). In the above expressions, the set of nearest
dual sites x̃ surrounding the fixed lattice site x is denoted as
hx̃, xi (see Fig. 1). In this work we only consider these two
classes of models.
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by hx̃, xi
(see right figure).

It is easy to verify that S

GN

is invariant under U(N)

flavor transformations. When m = 0, additional chi-
ral symmetries emerge. The Z

2

model is invariant under
�

i

(x) ! "(x)�

i

(x), �

i

(x) ! ��

i

(x)"(x), �(x̃) !
��(x̃) while the U(1) model is invariant under the additional
U(1) chiral symmetry �

i

(x) ! e

i"(x)✓/2

�

i

(x), �

i

(x) !
�

i

(x)e

i"(x)✓/2

, �(x̃) ! �(x̃) cos ✓ + ⇡(x̃) sin ✓, ⇡(x̃) !
⇡(x̃) cos ✓��(x̃) sin ✓. The models contain a quantum critical
point (QCP) separating a chirally symmetric phase (at small
couplings) from a phase where the chiral symmetry is spon-
taneously broken (at large couplings). The symmetries that
govern the QCP needs proper analysis due to fermion dou-
bling. Without such an analysis it is difficult to establish the
continuum field theory that emerges at the critical point [18].

In the traditional MC approach, one integrates over the
Grassmann fields and writes the partition function of the GN
models as

Z

Z2 =
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[D�] e

�S

AF
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(

DetD([
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, (6a)
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lem. However, if an alternate approach can be found where
the sign problem disappears, one can of course say the prob-
lem never suffered from a sign problem to begin with. On the
other hand, if this alternate approach was not known earlier,
the new approach can be considered as a solution to the sign
problem present in the other method. This is what we mean
when we say “solutions to unsolved sign problems”. It must
be noted that all sign problems are problems in exactly this
sense. Once a solution is found there is no longer a problem.
It is of course likely that some problems may remain unsolved
[20].

We consider lattice GN models containing N flavors of
massless staggered fermions with either a Z

2

or a U(1) chiral
symmetry [15]. While we work in three space-time dimen-
sions, our results can easily be extended to higher dimensions.
Although in three dimensions the symmetries we refer to are a
part of a flavor symmetry, they are often loosely called chiral
symmetries in the literature. The Z
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models with odd N and
all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach.
Here we show that the sign problems disappear in the fermion
bag approach. Our paper is organized as follows. In section
2 we review the auxiliary field approach to lattice GN models
with both Z

2

and U(1) chiral symmetries and discuss how the
sign problems arise. In section 3 we discuss the severity of
the sign problems. In section 4 we discuss the fermion bag
approach and show that sign problems do not arise. Section 5
contains our conclusions.

II. AUXILIARY FIELD APPROACH

Lattice GN models are formulated in the auxiliary field ap-
proach through the action
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rections, ⌘
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1

= (0, 0, 0), ⇣
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= (1, 0, 0),
⇣

3

= (1, 1, 0) are the staggered fermion phase factors and m

is the bare fermion mass. We assume anti-periodic boundary
conditions in all directions and denote the lattice volume by
V = L

3.

Following [15], we define the auxiliary fields on dual sites
x̃. The model with a Z
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chiral symmetry is defined through a
single real auxiliary field �(x̃), such that
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while the model with a U(1) chiral symmetry requires two
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where "(x) is the parity of a lattice site (1 on even sites and
�1 on odd sites). In the above expressions, the set of nearest
dual sites x̃ surrounding the fixed lattice site x is denoted as
hx̃, xi (see Fig. 1). In this work we only consider these two
classes of models.
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by hx̃, xi
(see right figure).
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flavor transformations. When m = 0, additional chi-
ral symmetries emerge. The Z
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model is invariant under
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(x)"(x), �(x̃) !
��(x̃) while the U(1) model is invariant under the additional
U(1) chiral symmetry �
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, �(x̃) ! �(x̃) cos ✓ + ⇡(x̃) sin ✓, ⇡(x̃) !
⇡(x̃) cos ✓��(x̃) sin ✓. The models contain a quantum critical
point (QCP) separating a chirally symmetric phase (at small
couplings) from a phase where the chiral symmetry is spon-
taneously broken (at large couplings). The symmetries that
govern the QCP needs proper analysis due to fermion dou-
bling. Without such an analysis it is difficult to establish the
continuum field theory that emerges at the critical point [18].

In the traditional MC approach, one integrates over the
Grassmann fields and writes the partition function of the GN
models as
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Z2 =
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AF
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3

In order to design a MC method the determinant terms in the
above expressions have to be real and positive. In the Z

2

model since ¯

� is real, the matrix elements of D[

¯

�] are real.
Hence, the determinant is real but not necessarily positive. In
the case of the U(1) model, ¯

� is complex and so the matrix
elements of D[

¯

�] and its determinant can be complex. Hence,
the Z

2

model as formulated in Eq. (6a) suffers from a sign
problem for all odd values of N , while the U(1) model as for-
mulated through Eq. (6b) suffers from a sign problem for all
values of N .

III. SEVERITY OF THE SIGN PROBLEM

Earlier calculations in the Z

2

and U(1) GN models have
all been performed in the auxiliary field approach [22–24].
The essential focus has been to understand the quantum phase
transition and compute the critical exponents. These calcula-
tions have circumvented the sign problem by studying even
N in the Z

2

case or by introducing conjugate fermions with
an opposite chiral charge in the U(1). Inclusion of conjugate
fermions changes the partition function from Eq. (6b) to

Z

c

U(1)

=

Z

[D�][D⇡] e

�S

AF

�

�

�

�

�

DetD([�])

�

�

�

�

�

2N

, (7)

and changes the flavor symmetries to U(N)⇥U(N) while the
chiral symmetry remains unchanged.

The N = 1 model with Z

2

chiral symmetry was also
studied in the auxiliary field approach using the HMC al-
gorithm [25]. Strangely, in this study the sign of the de-
terminant was never discussed and seems to have been ig-
nored. Since the results of the quantum critical behavior were
in quantitatively agreement with large N results (improved
with Padé-approximations), it may have been assumed that
the sign problem was mild. If this is indeed true then sta-
tistically, positive sign configurations should dominate over
negative sign configurations. The Z

2

model studied in [25]
is slightly different from the model studied here. The auxil-
iary fields �(x) also live on the main lattice site and the field
¯

� appearing in the Dirac operator D[

¯

�] of Eq. (2), is defined
as ¯

�(x) =

1

6

P

hz,xi �(z), where now hz, xi refers to the six
nearest neighbor sites z for a given site x. In order to study
the sign problem, we generated several Gaussian random aux-
iliary field configurations according to the distribution

P (�(x)) = exp

 

�
X

x

n

�

2

(x)� 1

2

log(⇡)

o

!

(8)

and computed Det(D[

¯

�]) for each of these configurations. We
then separated the configurations into those with a positive de-
terminant and those with a negative determinant. In Fig. 2 we
plot the distribution of configurations with positive and nega-
tive determinants as a function of log |Det(D[

¯

�])| for 63 and
12

3 lattices. As can be seen, the distribution of configura-
tions with positive and negative weights are almost identical
suggesting a severe sign problem rather than a mild one! Al-
though we are not performing important sampling, our results
clearly show that the sign problem must be studied carefully.

An important question to study is whether the HMC algo-
rithm is getting trapped in the sector of configurations with
positive weights (or negative weights). Note that, in the Z

2

models the only way to move from a positive weight sector
to the negative weight sector is to pass through configurations
which have almost zero weight assuming the step size in the
HMC algorithm is small. Perhaps the suppression of the tun-
neling between the two sectors leads to long auto-correlation
times or even lack of ergodicity. This argument also applies
to Z

2

models with even N [26].

IV. FERMION BAG APPROACH

We will now show that the sign problems in both the Z

2

and the U(1) models discussed in section II, disappear in the
fermion bag approach. The proof relies on the fact that any k

i

-
point correlation function involving the ith flavor of staggered
fermions defined through

C

i

(x

i1 , ..., xi

k

i

) =

Z

[d�

i

d�

i

]e

�
P

x,y

�

i

(x) D

xy

�

i

(y)

�

i

(x

i1)�i

(x

i1) ... �i

(x

i

k

i

)�

i

(x

i

k

i

) (9)

is positive semi-definite. This is due to the special properties
of the free staggered fermion matrix. Indeed, using the ideas
developed in the fermion bag approach [18], we can write

C

i

(x

i1 , .., xi

k

i

) = Det(D) Det(G[{x}
i

]) = Det(W [{x}
i

])

(10)
where G[{x}

i

] is the k

i

⇥ k

i

matrix of propagators between
the k

i

sites in the set {x}
i

⌘ x

i

p

, p = 1, .., k

i

whose ma-
trix elements are G

x

p

,x

q

= D

�1

x

p

,x

q

and the matrix W [{x}
i

]

is a (V � k

i

) ⇥ (V � k

i

) matrix identical to the matrix D

except that the sites in the set {x}
i

are dropped from the ma-
trix. All the determinants appearing in Eq.(10) can be shown
to be positive (or zero). The simplest way to see this is to
consider the matrix W . Since it is exactly the same as the
staggered fermion matrix with some sites removed, its eigen-
values come in complex conjugate pairs of the form m ± i�.
Unpaired eigenvalues are always m and they too come in pairs
when the lattice is bipartite. When m = 0 then the determi-
nant can be exactly zero. Thus, C

i

(x

i1 , .., xi

k

i

) � 0. We will
use this property to prove the absence of a sign problem in the
fermion bag approach.

Instead of integrating out the fermion fields let us integrate
out the auxiliary fields first and construct the appropriate four
fermion action for the models. Let us first consider the Z

2

model. Each integral over the auxiliary field �(x̃) on the dual
site x̃ gives,

I

x̃

=

Z

d�(x̃) e

�S

AF

��(x̃)
8 (

P
i,[x,x̃] �i

(x)�

i

(x)

)

= N e

�S

I

(x̃)

,

(11)
where N =

p

2⇡g

2

/N and

S

I

(x̃) = � g

2

128N

h

X

i,[x,x̃]

�

i

(x)�

i

(x)

i

2

, (12)

Define a k-point correlator for flavor i:
Free stagger fermion

Ci(xi1 , .., xiki
) = Det(D) Det(G[{x}i]) = Det(W [{x}i])

Free stagger matrix (V x V matrix)

propagator matrix 
(ki x ki matrix)

Similar structure as free stagger matrix, 
but all {x}i sites have been dropped, can 

be broken into smaller matrixes 

>= 0 

7
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Dual relation

Det(D) Det(G[{x}i]) = Det(W [{x}i]) 2

strong coupling fermion bags

Interaction Bonds

Interaction bonds

Weak coupling fermion bag

FIG. 1. An illustration of a “fermion-bag” configuration at strong couplings (left) and weak couplings (right). The interactions
in this illustration are represented by solid bonds and the fermion bags are represented by shaded region. At strong couplings
the fermion bag is made up of free sites and breaks up into many disconnected pieces, while at weak couplings the bag contains
interaction sites.

tion involving n massless staggered fermions given by

S = �
X

x,y,i

 

i

(x) D
xy

 

i

(y)

�
X

hxyi

X

i,j

U

i,j,hxyi 
i

(x) 
i

(x) 
j

(y) 
j

(y) (5)

where hxyi refers to some well defined set of neighboring
lattice sites. Further we will assume that all the couplings
U

i,j,hxyi are non-negative real constants. Many interest-
ing four-fermion models are of this type [7]. The partition
function can be expanded in powers of the coupling and
is given by

Z =

Z

[d d ] e�S =
X

[{x}]

{[U ]p}
n

Y

i=1

C

i

(x1, ..., xki), (6)

where {[U ]}p refers to a generic power of the coupling
and k

i

, i = 1, 2, ..n refers to the number of interaction
vertices for each flavor. On a finite lattice the expansion
is convergent since it is a polynomial.

The above expansion of the partition function begs
for the following intuitive interpretation. Since the k

i

interaction sites contain both  

i

and  

i

, the i

th fla-
vor of fermions are already paired on these sites and do
not cause sign problems. On the other hand, unpaired
fermions of the i

th flavor that hop freely on the remain-
ing sites can indeed cause sign problems and need to be
summed over to solve the sign problem. The free sites
are collectively referred to as a fermion bag. The sum-
mation of all fermion world lines inside the bag leads to
the weight C

i

(x1, x2, .., xk

) = Det(W [{x}
i

]) which is the
determinant of a (V � k

i

)⇥ (V � k

i

) matrix. This deter-
minant can be evaluated easily if (V �k

i

) is small. This is
expected at strong couplings and hence we refer to these

free fermion bags as strong coupling fermion bags. It was
shown in [5] that at strong couplings a fermion bag splits
into many small disconnected pieces making things even
simpler. The left figure of Fig. 1 gives an illustration of
the disconnected pieces of a strong coupling fermion bag.
At weak couplings the above definition of a fermion

bag loses its charm since V � k

i

becomes large. How-
ever, thanks to a concept of duality we can construct
the fermion bag di↵erently. At weak couplings we can
view the interactions as the unpaired fermionic degrees
of freedom that cause fluctuations over the paired free
fermionic vacuum. In this view the fermions hop from
one interaction site to another interaction site leading
to sign problems and need to be summed over. Now
the interaction sites form the fermion bag. Again the
summation of the fermions inside this dual bag leads
to the same weight C

i

(x1, x2, .., xk

) = Det(W [{x}
i

]) =
Det(D) Det(G[{x}

i

]) but now viewed as the determinant
of a k

i

⇥k

i

matrix. Note we have used the duality relation,
Eq.(4) here. The determinant can now be calculated eas-
ily since k

i

is small at weak couplings. Hence we refer to
these dual bags as weak coupling fermion bags. The right
figure of Fig. 1 gives an illustration of a weak coupling
fermion bag. The weak coupling fermion bag approach is
equivalent to the idea of summing over all Feynman dia-
grams and was introduced earlier in the framework of di-
agrammatic determinantal Monte Carlo method [8]. On
the other hand, in our opinion the fermion bag approach
is more intuitively appealing in the context of lattice field
theories since it uncovers the powerful concept of duality
and extends to strong couplings.
The fermion bag approach is general and can

be adapted to relativistic Wilson fermions and non-
relativistic fermions. However, in some models the weight
of a fermion bag is no longer a determinant, but involves

2

strong coupling fermion bags

Interaction Bonds

Interaction bonds

Weak coupling fermion bag

FIG. 1. An illustration of a “fermion-bag” configuration at strong couplings (left) and weak couplings (right). The interactions
in this illustration are represented by solid bonds and the fermion bags are represented by shaded region. At strong couplings
the fermion bag is made up of free sites and breaks up into many disconnected pieces, while at weak couplings the bag contains
interaction sites.
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where hxyi refers to some well defined set of neighboring
lattice sites. Further we will assume that all the couplings
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i,j,hxyi are non-negative real constants. Many interest-
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function can be expanded in powers of the coupling and
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where {[U ]}p refers to a generic power of the coupling
and k
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, i = 1, 2, ..n refers to the number of interaction
vertices for each flavor. On a finite lattice the expansion
is convergent since it is a polynomial.

The above expansion of the partition function begs
for the following intuitive interpretation. Since the k
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and  
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, the i
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not cause sign problems. On the other hand, unpaired
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ing sites can indeed cause sign problems and need to be
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are collectively referred to as a fermion bag. The sum-
mation of all fermion world lines inside the bag leads to
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]) which is the
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) is small. This is
expected at strong couplings and hence we refer to these
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into many small disconnected pieces making things even
simpler. The left figure of Fig. 1 gives an illustration of
the disconnected pieces of a strong coupling fermion bag.
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ever, thanks to a concept of duality we can construct
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view the interactions as the unpaired fermionic degrees
of freedom that cause fluctuations over the paired free
fermionic vacuum. In this view the fermions hop from
one interaction site to another interaction site leading
to sign problems and need to be summed over. Now
the interaction sites form the fermion bag. Again the
summation of the fermions inside this dual bag leads
to the same weight C

i

(x1, x2, .., xk

) = Det(W [{x}
i

]) =
Det(D) Det(G[{x}

i

]) but now viewed as the determinant
of a k

i

⇥k

i

matrix. Note we have used the duality relation,
Eq.(4) here. The determinant can now be calculated eas-
ily since k

i

is small at weak couplings. Hence we refer to
these dual bags as weak coupling fermion bags. The right
figure of Fig. 1 gives an illustration of a weak coupling
fermion bag. The weak coupling fermion bag approach is
equivalent to the idea of summing over all Feynman dia-
grams and was introduced earlier in the framework of di-
agrammatic determinantal Monte Carlo method [8]. On
the other hand, in our opinion the fermion bag approach
is more intuitively appealing in the context of lattice field
theories since it uncovers the powerful concept of duality
and extends to strong couplings.
The fermion bag approach is general and can

be adapted to relativistic Wilson fermions and non-
relativistic fermions. However, in some models the weight
of a fermion bag is no longer a determinant, but involves
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Dual relation

Det(D) Det(G[{x}i]) = Det(W [{x}i]) 2

strong coupling fermion bags

Interaction Bonds

Interaction bonds

Weak coupling fermion bag

FIG. 1. An illustration of a “fermion-bag” configuration at strong couplings (left) and weak couplings (right). The interactions
in this illustration are represented by solid bonds and the fermion bags are represented by shaded region. At strong couplings
the fermion bag is made up of free sites and breaks up into many disconnected pieces, while at weak couplings the bag contains
interaction sites.
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where hxyi refers to some well defined set of neighboring
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of freedom that cause fluctuations over the paired free
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of a k

i

⇥k

i

matrix. Note we have used the duality relation,
Eq.(4) here. The determinant can now be calculated eas-
ily since k
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figure of Fig. 1 gives an illustration of a weak coupling
fermion bag. The weak coupling fermion bag approach is
equivalent to the idea of summing over all Feynman dia-
grams and was introduced earlier in the framework of di-
agrammatic determinantal Monte Carlo method [8]. On
the other hand, in our opinion the fermion bag approach
is more intuitively appealing in the context of lattice field
theories since it uncovers the powerful concept of duality
and extends to strong couplings.
The fermion bag approach is general and can

be adapted to relativistic Wilson fermions and non-
relativistic fermions. However, in some models the weight
of a fermion bag is no longer a determinant, but involves
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FIG. 1. An illustration of a “fermion-bag” configuration at strong couplings (left) and weak couplings (right). The interactions
in this illustration are represented by solid bonds and the fermion bags are represented by shaded region. At strong couplings
the fermion bag is made up of free sites and breaks up into many disconnected pieces, while at weak couplings the bag contains
interaction sites.
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into many small disconnected pieces making things even
simpler. The left figure of Fig. 1 gives an illustration of
the disconnected pieces of a strong coupling fermion bag.
At weak couplings the above definition of a fermion
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ever, thanks to a concept of duality we can construct
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view the interactions as the unpaired fermionic degrees
of freedom that cause fluctuations over the paired free
fermionic vacuum. In this view the fermions hop from
one interaction site to another interaction site leading
to sign problems and need to be summed over. Now
the interaction sites form the fermion bag. Again the
summation of the fermions inside this dual bag leads
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of a k
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matrix. Note we have used the duality relation,
Eq.(4) here. The determinant can now be calculated eas-
ily since k
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is small at weak couplings. Hence we refer to
these dual bags as weak coupling fermion bags. The right
figure of Fig. 1 gives an illustration of a weak coupling
fermion bag. The weak coupling fermion bag approach is
equivalent to the idea of summing over all Feynman dia-
grams and was introduced earlier in the framework of di-
agrammatic determinantal Monte Carlo method [8]. On
the other hand, in our opinion the fermion bag approach
is more intuitively appealing in the context of lattice field
theories since it uncovers the powerful concept of duality
and extends to strong couplings.
The fermion bag approach is general and can

be adapted to relativistic Wilson fermions and non-
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Solution to the sign problem in GN 
model : Z2

Integrate out auxiliary field 
first, needs to compute

I

x̃

=

Z
d�(x̃) e�S

AF

��(x̃)
8 (

P
i,[x,x̃] �i

(x)�
i

(x)) = N e�S

I

(x̃)

for each  ̃x

3

In order to design a MC method the determinant terms in the
above expressions have to be real and positive. In the Z

2

model since ¯

� is real, the matrix elements of D[

¯

�] are real.
Hence, the determinant is real but not necessarily positive. In
the case of the U(1) model, ¯

� is complex and so the matrix
elements of D[

¯

�] and its determinant can be complex. Hence,
the Z

2

model as formulated in Eq. (6a) suffers from a sign
problem for all odd values of N , while the U(1) model as for-
mulated through Eq. (6b) suffers from a sign problem for all
values of N .

III. SEVERITY OF THE SIGN PROBLEM

Earlier calculations in the Z

2

and U(1) GN models have
all been performed in the auxiliary field approach [22–24].
The essential focus has been to understand the quantum phase
transition and compute the critical exponents. These calcula-
tions have circumvented the sign problem by studying even
N in the Z

2

case or by introducing conjugate fermions with
an opposite chiral charge in the U(1). Inclusion of conjugate
fermions changes the partition function from Eq. (6b) to

Z

c

U(1)

=

Z

[D�][D⇡] e

�S

AF

�

�

�

�

�

DetD([�])

�

�

�

�

�

2N

, (7)

and changes the flavor symmetries to U(N)⇥U(N) while the
chiral symmetry remains unchanged.

The N = 1 model with Z

2

chiral symmetry was also
studied in the auxiliary field approach using the HMC al-
gorithm [25]. Strangely, in this study the sign of the de-
terminant was never discussed and seems to have been ig-
nored. Since the results of the quantum critical behavior were
in quantitatively agreement with large N results (improved
with Padé-approximations), it may have been assumed that
the sign problem was mild. If this is indeed true then sta-
tistically, positive sign configurations should dominate over
negative sign configurations. The Z

2

model studied in [25]
is slightly different from the model studied here. The auxil-
iary fields �(x) also live on the main lattice site and the field
¯

� appearing in the Dirac operator D[

¯

�] of Eq. (2), is defined
as ¯

�(x) =

1

6

P

hz,xi �(z), where now hz, xi refers to the six
nearest neighbor sites z for a given site x. In order to study
the sign problem, we generated several Gaussian random aux-
iliary field configurations according to the distribution

P (�(x)) = exp

 

�
X

x

n

�

2

(x)� 1

2

log(⇡)

o

!

(8)

and computed Det(D[

¯

�]) for each of these configurations. We
then separated the configurations into those with a positive de-
terminant and those with a negative determinant. In Fig. 2 we
plot the distribution of configurations with positive and nega-
tive determinants as a function of log |Det(D[

¯

�])| for 63 and
12

3 lattices. As can be seen, the distribution of configura-
tions with positive and negative weights are almost identical
suggesting a severe sign problem rather than a mild one! Al-
though we are not performing important sampling, our results
clearly show that the sign problem must be studied carefully.

An important question to study is whether the HMC algo-
rithm is getting trapped in the sector of configurations with
positive weights (or negative weights). Note that, in the Z

2

models the only way to move from a positive weight sector
to the negative weight sector is to pass through configurations
which have almost zero weight assuming the step size in the
HMC algorithm is small. Perhaps the suppression of the tun-
neling between the two sectors leads to long auto-correlation
times or even lack of ergodicity. This argument also applies
to Z

2

models with even N [26].

IV. FERMION BAG APPROACH

We will now show that the sign problems in both the Z

2

and the U(1) models discussed in section II, disappear in the
fermion bag approach. The proof relies on the fact that any k

i

-
point correlation function involving the ith flavor of staggered
fermions defined through

C

i

(x

i1 , ..., xi

k

i

) =

Z

[d�

i

d�

i

]e

�
P

x,y

�

i

(x) D

xy

�

i

(y)

�

i

(x

i1)�i

(x

i1) ... �i

(x

i

k

i

)�

i

(x

i

k

i

) (9)

is positive semi-definite. This is due to the special properties
of the free staggered fermion matrix. Indeed, using the ideas
developed in the fermion bag approach [18], we can write

C

i

(x

i1 , .., xi

k

i

) = Det(D) Det(G[{x}
i

]) = Det(W [{x}
i

])

(10)
where G[{x}

i

] is the k

i

⇥ k

i

matrix of propagators between
the k

i

sites in the set {x}
i

⌘ x

i

p

, p = 1, .., k

i

whose ma-
trix elements are G

x

p

,x

q

= D

�1

x

p

,x

q

and the matrix W [{x}
i

]

is a (V � k

i

) ⇥ (V � k

i

) matrix identical to the matrix D

except that the sites in the set {x}
i

are dropped from the ma-
trix. All the determinants appearing in Eq.(10) can be shown
to be positive (or zero). The simplest way to see this is to
consider the matrix W . Since it is exactly the same as the
staggered fermion matrix with some sites removed, its eigen-
values come in complex conjugate pairs of the form m ± i�.
Unpaired eigenvalues are always m and they too come in pairs
when the lattice is bipartite. When m = 0 then the determi-
nant can be exactly zero. Thus, C

i

(x

i1 , .., xi

k

i

) � 0. We will
use this property to prove the absence of a sign problem in the
fermion bag approach.

Instead of integrating out the fermion fields let us integrate
out the auxiliary fields first and construct the appropriate four
fermion action for the models. Let us first consider the Z

2

model. Each integral over the auxiliary field �(x̃) on the dual
site x̃ gives,

I

x̃

=

Z

d�(x̃) e

�S

AF

��(x̃)
8 (

P
i,[x,x̃] �i

(x)�

i

(x)

)

= N e

�S

I

(x̃)

,

(11)
where N =

p

2⇡g

2

/N and

S

I

(x̃) = � g

2

128N

h

X

i,[x,x̃]

�

i

(x)�

i

(x)

i

2

, (12)
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�

i

(x)�

j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S

Z2,int =

P

x̃

S

I

(x̃). Collecting the terms in each of the four types of
four fermion couplings separately we see that

S

Z2,int = U

S

B
S

+ U

L

B
L

+ U

F

B
F

+ U

B

B
B

(13)

where U

S

/4 = U

L

/4 = U

F

/2 = U

B

= g

2

/(64N) and

Bbond =

X

i,j,hxyi2bond

�

i

(x)�

i

(x)�

j

(y)�

j

(y). (14)

Based on the above results, the partition function of the Z

2

model can be rewritten as

Z

Z2 =

Z

Y

i

[d�

i

d�

i

] e

�S

Z2
. (15)

where S

Z2 = S

0

+ S

Z2,int is the equivalent four-fermion
action of the model. Here S

0

=

P

x,y,i

�

i

(x)D

x,y

�

i

(y) is the
free fermion action.

In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
pling. For example the four-fermion coupling of the type

�

i

(x

p

)�

i

(x

p

)�

j

(x

q

)�

j

(x

q

) can be denoted by the bond vari-
able b

ij

(x

p

, x

q

) = 0, 1, such that if it is 0 then no bond is
assumed to exist between the sites x

p

and x

q

, otherwise the
specific four-fermion coupling is inserted in the partition func-
tion. Due to the Grassmann nature of the couplings higher
powers of the couplings do not exist. More details can be
found in [16]. Thus, in the fermion bag formulation, the parti-
tion function can be written as a sum over these bond config-
urations [b], such that

Z
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where n

S

, n

L

, n

F

and n

B

are the total number of bonds of
each type and the correlation function C

i

(x

i1 , .., xi

k

i

) was de-
fined in Eq.(9). A given bond configuration [b] uniquely de-
termines the k

i

sites x
i1 ....xi

k

i

(ordered in a consistent way).
Since we argued above that C

i

(x

i1 , .., xi

k

i

) � 0 there is no
sign problem in this expansion of the partition function for all
non-negative values of U

S

,U
L

,U
F

, U
B

, any positive integer
N and real mass m.

In the case of the U(1) model, we need to integrate over
both the auxiliary fields �(x̃),⇡(x̃) on every dual site. It is
straightforward to verify that

I

x̃

=

Z

[d�(x̃)d⇡(x̃)] e

�S

AF

��(x̃)
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)

, (18)

Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S

Z2,int =

P

x̃

S
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(x̃). Collecting the terms in each of the four types of
four fermion couplings separately we see that
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where U
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Based on the above results, the partition function of the Z
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model can be rewritten as
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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In the case of the U(1) model, we need to integrate over
both the auxiliary fields �(x̃),⇡(x̃) on every dual site. It is
straightforward to verify that

I

x̃

=

Z

[d�(x̃)d⇡(x̃)] e

�S

AF

��(x̃)
8 (

P
i,[x̃,x] �i

(x)�

i

(x)

)

⇥ e

�i

⇡(x̃)
8 (

P
i,[x̃,x] "(x)�i

(x)�

i

(x)

)

= N e

�S

I

(x̃) (17)

where N = (4⇡g

2

/N) and

S

I

(x̃) =

g

2

64N

(

h

X

i,[x,x̃]

�

i

(x)�

i

(x)

i

2

�
h

X

i,[x,x̃]

"(x)�

i

(x)�

i

(x)

i

2

)

, (18)

Interestingly, the four-fermion couplings of the type S and F
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
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Interestingly, the four-fermion couplings of the type S and F
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the other hand couplings of the type L and B survive so that
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�
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j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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where n

S

, n

L

, n

F

and n

B

are the total number of bonds of
each type and the correlation function C

i

(x

i1 , .., xi

k

i

) was de-
fined in Eq.(9). A given bond configuration [b] uniquely de-
termines the k

i

sites x
i1 ....xi

k

i

(ordered in a consistent way).
Since we argued above that C

i

(x

i1 , .., xi

k

i

) � 0 there is no
sign problem in this expansion of the partition function for all
non-negative values of U

S

,U
L

,U
F

, U
B

, any positive integer
N and real mass m.

In the case of the U(1) model, we need to integrate over
both the auxiliary fields �(x̃),⇡(x̃) on every dual site. It is
straightforward to verify that

I

x̃

=

Z

[d�(x̃)d⇡(x̃)] e

�S

AF

��(x̃)
8 (

P
i,[x̃,x] �i

(x)�

i

(x)

)

⇥ e

�i

⇡(x̃)
8 (

P
i,[x̃,x] "(x)�i

(x)�

i

(x)

)

= N e

�S

I

(x̃) (17)

where N = (4⇡g

2

/N) and

S

I

(x̃) =

g

2

64N

(

h

X

i,[x,x̃]

�

i

(x)�

i

(x)

i

2

�
h

X

i,[x,x̃]

"(x)�

i

(x)�

i

(x)

i

2

)

, (18)

Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�

i

(x)�

j
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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the four-fermion interaction term of the action S
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Interestingly, the four-fermion couplings of the type S and F
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the other hand couplings of the type L and B survive so that

exp[�(xp)i�i(xp)�j(xq)�j(xq)]

= 1 + �(xp)i�i(xp)�j(xq)�j(xq)

=
X

[b]

U

nS
S U

nL
L U

nF
F U

nB
B

Y

i

Det(W [{x}i])

Tuesday, June 26, 12



Solution to the sign problem in GN 
model : U(1)

Integrate out auxiliary field 
first, needs to compute

4

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

log»DetHD@fDL»

N

L = 6
Sign = +1

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

log»DetHD@fDL»

N

L = 6
Sign = -1

550 600 650 700
0

50

100

150

200

log»DetHD@fDL»

N

L = 12
Sign = +1

550 600 650 700
0

50

100

150

200

log»DetHD@fDL»

N

L = 12
Sign = -1

FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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i

(x)�

i

(x)�

j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F
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identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S
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In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
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site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.
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Interestingly, the four-fermion couplings of the type S and F
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the other hand couplings of the type L and B survive so that
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that

S L F B
break U(1) to Z2
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�

i

(x)�

j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S

Z2,int =
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(x̃). Collecting the terms in each of the four types of
four fermion couplings separately we see that
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Based on the above results, the partition function of the Z
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In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
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tion. Due to the Grassmann nature of the couplings higher
powers of the couplings do not exist. More details can be
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where n
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are the total number of bonds of
each type and the correlation function C
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Since we argued above that C
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) � 0 there is no
sign problem in this expansion of the partition function for all
non-negative values of U
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, any positive integer
N and real mass m.

In the case of the U(1) model, we need to integrate over
both the auxiliary fields �(x̃),⇡(x̃) on every dual site. It is
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.
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S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
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sign problem in this expansion of the partition function for all
non-negative values of U
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N and real mass m.

In the case of the U(1) model, we need to integrate over
both the auxiliary fields �(x̃),⇡(x̃) on every dual site. It is
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that

S L F B
break U(1) to Z2

5

the four-fermion action for the U(1) model turns out to be

S

U(1)

= S
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+ U

L

B
L

+ U

B

B
B

(19)

with U

L

/4 = U

B

= g

2

/(16N). Thus, the only difference
between the Z

2

and U(1) models is that the couplings U
S

=

U

F

= 0 in the U(1) model. Indeed these couplings break the
U(1) symmetry to a Z

2

symmetry as can be easily verified.
Since we already proved that the sign problem in the Z

2

model
was absent for all non-negative values of U

S

, U
L

, U
F

, U
B

and N in the fermion bag formulation, the same is true for the
U(1) model as well.

V. CONCLUSIONS

The fermion bag approach provides an alternative approach
to fermion field theories where solutions to new sign prob-
lems emerge naturally. Here we have demonstrated that some
sign problems in the auxiliary field formulation of GN mod-
els, especially with Z

2

and U(1) chiral symmetries, disappear
in the fermion bag approach. While we have not shown here,
we can solve sign problems in some lattice field theories con-
taining both dynamical boson and fermion fields with similar
chiral symmetries. In these more complex models, the so-
lutions emerge when bosons are formulated in the world-line

approach and the fermions are formulated in the bag approach.
Such an approach to quantum field theories was proposed in
[27].

Sign problems in other fermion models with more complex
symmetries are also solvable in the fermion bag approach.
However, in many interesting cases the Boltzmann weight of a
fermion bag, although non-negative, turns out to be a fermio-
nant instead of a determinant [28]. Since the computation of
the fermionant can be exponentially hard, the fermion bag ap-
proach loses its practical appeal in such cases. Still, we be-
lieve that there are many other interesting models where the
weight of the fermion bag continues to be positive and com-
putable with polynomial effort.
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
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the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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) � 0 there is no
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S
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found in [16]. Thus, in the fermion bag formulation, the parti-
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sign problem in this expansion of the partition function for all
non-negative values of U
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, any positive integer
N and real mass m.

In the case of the U(1) model, we need to integrate over
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that

S L F B
break U(1) to Z2

NO Sign problem!

5

the four-fermion action for the U(1) model turns out to be

S
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= S
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+ U
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B
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+ U

B

B
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(19)

with U

L

/4 = U

B

= g

2

/(16N). Thus, the only difference
between the Z

2

and U(1) models is that the couplings U
S

=

U

F

= 0 in the U(1) model. Indeed these couplings break the
U(1) symmetry to a Z

2

symmetry as can be easily verified.
Since we already proved that the sign problem in the Z

2

model
was absent for all non-negative values of U

S

, U
L

, U
F

, U
B

and N in the fermion bag formulation, the same is true for the
U(1) model as well.

V. CONCLUSIONS

The fermion bag approach provides an alternative approach
to fermion field theories where solutions to new sign prob-
lems emerge naturally. Here we have demonstrated that some
sign problems in the auxiliary field formulation of GN mod-
els, especially with Z

2

and U(1) chiral symmetries, disappear
in the fermion bag approach. While we have not shown here,
we can solve sign problems in some lattice field theories con-
taining both dynamical boson and fermion fields with similar
chiral symmetries. In these more complex models, the so-
lutions emerge when bosons are formulated in the world-line

approach and the fermions are formulated in the bag approach.
Such an approach to quantum field theories was proposed in
[27].

Sign problems in other fermion models with more complex
symmetries are also solvable in the fermion bag approach.
However, in many interesting cases the Boltzmann weight of a
fermion bag, although non-negative, turns out to be a fermio-
nant instead of a determinant [28]. Since the computation of
the fermionant can be exponentially hard, the fermion bag ap-
proach loses its practical appeal in such cases. Still, we be-
lieve that there are many other interesting models where the
weight of the fermion bag continues to be positive and com-
putable with polynomial effort.
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Solution to the sign problem in SU(2) 
Yukawa model (nucleon-pion interaction)
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Conclusions

• Fermion bag approach:  A new method for  
resummation of fermionic degrees of freedom

• Solutions to previously unsolved sign problems in 
GN and Yukawa models

• Implementation through efficient algorithms (large 
volume, chiral limit, no critical slowing down...)

• Applications to many interesting physics (nuclear 
effective field theory, unitary fermi gas, graphene 
physics...)
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Severity of the sign problem in GN model
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�

i

(x)�

j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S

Z2,int =
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Based on the above results, the partition function of the Z
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, any positive integer
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In the case of the U(1) model, we need to integrate over
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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dices and x and y are corners of the cube surrounding the dual
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based on the bonds hxyi connecting the corners x and y. If
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S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
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F -bond and B-bond respectively. These four bond types are
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Interestingly, the four-fermion couplings of the type S and F
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
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dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
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dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[
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identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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j
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j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[

¯

�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
�

i

(x)�

i

(x)�

j

(y)�

j

(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[
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�])|. One million
configurations and 5000 configurations were generated at 63 and 12

3 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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j
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action S
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In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
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, otherwise the
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
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(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds hxyi connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.
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In the fermion bag approach, each four-fermion coupling is
represented as a bond and expanded in powers of the cou-
pling. For example the four-fermion coupling of the type

�

i

(x

p

)�

i

(x

p

)�

j

(x

q

)�

j

(x

q

) can be denoted by the bond vari-
able b

ij

(x

p

, x

q

) = 0, 1, such that if it is 0 then no bond is
assumed to exist between the sites x

p

and x

q

, otherwise the
specific four-fermion coupling is inserted in the partition func-
tion. Due to the Grassmann nature of the couplings higher
powers of the couplings do not exist. More details can be
found in [16]. Thus, in the fermion bag formulation, the parti-
tion function can be written as a sum over these bond config-
urations [b], such that

Z

Z2 =

X

[b]

U

n

S

S

U

n

L

L

U

n

F

F

U

n

B

B

Z

Y

i

[d�

i

d�

i

] e

�S0

⇥
Y

i

�

i

(x

i1)�i

(x

i2)...�i

(x

i

k

i

)�

i

(x

i

k

i

)

=

X

[b]

U

n

S

S

U

n

L

L

U

n

F

F

U

n

B

B

n

Y

i

C

i

(x

i1 , .., xi

k

i

)

o

(16)
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Interestingly, the four-fermion couplings of the type S and F

get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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