
αs

R.J.H

The gluon
propagator

The exceptional
three gluon vertex

The
non-exceptional
three gluon vertex

Results

Conclusions

Back up

The gluon propagator The exceptional three gluon vertex The non-exceptional three gluon vertex Results Conclusions Back up

The QCD strong coupling from the lattice

three gluon vertex using 2+1 flavour domain
wall fermions

Renwick James Hudspith, Peter Boyle and Luigi Del Debbio

SUPA, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK
RBC/UKQCD

s0968574@sms.ed.ac.uk
renwick.james.hudspith@gmail.com

June 26, 2012



αs

R.J.H

The gluon
propagator

The exceptional
three gluon vertex

The
non-exceptional
three gluon vertex

Results

Conclusions

Back up

The gluon propagator The exceptional three gluon vertex The non-exceptional three gluon vertex Results Conclusions Back up

Recent lattice calculations

Wilson loop

HPQCD : Davies et al. (2008) (Nf=2+1) .

Heavy current correlator

HPQCD : Allison et al. (2008), McNeile et al. (2010)
(Nf=2+1).

Light current correlator

JLQCD : Shintani et al. (2009) (Nf=2+1).

Schrödinger functional

ALPHA : DellaMorte et al. (2005) (Nf=2).

Vertex functions

Ghost-Gluon ETMC : Blossier et al. (2010) (Nf=1+1).
(Nf=2+1+1) See K. Petrov’s talk.
Triple-gluon RBC/UKQCD : R.J.H , Boyle & Del Debbio
(Nf=2+1).
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Recipe

Fix gauge fields to Landau gauge.
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Recipe

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.
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Recipe

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.
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Recipe

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.

Measure the gluonic three point function.

Exceptional kinematics :
p21 = p22 = µ2, p23 = 0.

Non-exceptional kinematics :
p21 = p22 = (−p1 − p2)

2 = µ2.
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Recipe

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.

Measure the gluonic three point function.

Exceptional kinematics :
p21 = p22 = µ2, p23 = 0.

Non-exceptional kinematics :
p21 = p22 = (−p1 − p2)

2 = µ2.

Amputate the three point function’s legs & perform gluon field
renormalisation.
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Recipe

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.

Measure the gluonic three point function.

Exceptional kinematics :
p21 = p22 = µ2, p23 = 0.

Non-exceptional kinematics :
p21 = p22 = (−p1 − p2)

2 = µ2.

Amputate the three point function’s legs & perform gluon field
renormalisation.

Match to MS at given scale µ. Run to the Z mass.
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Ensembles

RBC/UKQCD ensembles, Nf=2+1 DWF.

Iwasaki gauge action.

“Fine”

1 323 × 64× 16
(2.75fm3

× 5.5fm).

2 a
−1 = 2.282(28) GeV.

3 ams = 0.03.

amu = 0.004 (519),
amu = 0.006 (745),
amu = 0.008 (308).

“Coarse”

1 243 × 64× 16.
(2.74fm3

× 7.3fm)

2 a
−1 = 1.730(25) GeV.

3 ams = 0.04

amu = 0.005 (1555),
amu = 0.01 (803),
amu = 0.02 (573).
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Fixing to Landau gauge

Fix to Landau gauge using a Fourier-accelerated algorithm.
Gluon fields defined as

Aµ(x + aµ̂/2) =
1

2i

(

Uµ(x + aµ̂/2)− Uµ(x + aµ̂/2)†
)

Trf
,

(X )Trf = X −
1

Nc
Tr [X ] INc×Nc .

We fix to an accuracy of
1

V

∑

x

Tr
[

|∂µAµ(x + aµ̂/2)|2
]

< 10−20.

And Fourier transform our fields to momentum space.

We use the following momentum definitions,

apµ =
2πnµ
Lµ

, p̃µ = 2 sin
(apµ

2

)

.

The Landau condition p̃µAµ(p) = 0 is not a constraint for
p=0!
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Gluon propagator

We amputate the external legs of our three point function using the
gluon propagator.

Two point gluonic correlation function, has tensor structure in
Landau gauge

G ab
µν(p

2) =

(

δµν −
pµpν

p2

)

G ab(p2).

Measured on the lattice as

G (2)(p2) =
1

V

2

(Nd − 1)(Nc2 − 1)
Gµµ(p

2),

Gµν(p
2) = 〈Tr [Aµ(p)Aν(−p)]〉.

The (Nd − 1) factor is valid only for p 6= 0, conventionally use

G (2)(0) =
1

V

2

Nd(Nc2 − 1)
Gµµ(0).

Ambiguity in the gluon normalisation at zero momentum?
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Testing the anisotropic gluon propagator

Are all polarisations equivalent for the zero momentum gluon
propagator on an asymmetric (Lt > Lx,y,z ) lattice?



αs

R.J.H

The gluon
propagator

The exceptional
three gluon vertex

The
non-exceptional
three gluon vertex

Results

Conclusions

Back up

The gluon propagator The exceptional three gluon vertex The non-exceptional three gluon vertex Results Conclusions Back up

Testing the anisotropic gluon propagator

Are all polarisations equivalent for the zero momentum gluon
propagator on an asymmetric (Lt > Lx,y,z ) lattice?

Only asymmetric aspect of measurement at zero momentum is
the volume.

A spatial-temporal difference must be a finite volume effect.

Expect Gii (spatial propagator) and Gtt (temporal propagator),
to be equivalent at higher momenta.

Remove field renormalisation by taking the ratio Gxx (p1)
G (2)(p2)

, a direct

measure of anisotropy effects. Allowing comparisons of
anisotropies at different lattice spacings.
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Zero momentum gluon propagator breaks Euclidean

symmetry

0 0.5 1 1.5 2 2.5 3 3.5 4
p [ GeV ]

0

5

10

15

20

25

G
xx

 (
 p

 )
 / 

G
(2

)  (
 p

 =
 2

 G
eV

 )
 

G
ii
( p ) / G

(2)
 ( p = 2 GeV )

G
tt
( p ) / G

(2)
 ( p = 2 GeV )

The fine lattice gluon anisotropy.
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The ratio Gxx (0)/G (2)(p = 2 GeV).

Does this compromise the measurement in the exceptional
scheme?

There is no obvious way to control finite volume effects for the zero
momentum gluon propagator. Large breaking of Euclidean geometry
by our volume. G (2)(0) is finite volume compromised.



The exceptional scheme
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The M̃OMgg scheme

Used in Parinello et al. (1994,1996) 1, Boucaud et al. (1998)2 &
perturbative matching from Chetyrkin & Rétey (2000) 3.

p21 = p22 = µ2, p23 = 0.

Project out the scalar amplitude,

G (3)(p2) =
4

(Nd − 1)Nc(Nc2 − 1)

(

δµν −
p̃µp̃ν

p̃2

)

p̃ρ

p̃2
Gµνρ(p

2),

Gµνρ(p
2) = 〈Tr [Aµ(p)Aν (−p)Aρ(0)]〉.

Renormalise the gluon fields using ZAµ
(p2) = p̃2G (2)(p2),

g
M̃OMgg

R (µ2) = ZAµ
(µ2)3/2

G (3)(µ2)
(

G (2)(µ2)
)2

G (2)(0)
.

1arXiv:hep-lat/9405024v1 , arXiv:hep-lat/9605033v2
2arXiv:hep-ph/9810322v2
3arXiv:hep-ph/0007088v1



αs

R.J.H

The gluon
propagator

The exceptional
three gluon vertex

The
non-exceptional
three gluon vertex

Results

Conclusions

Back up

The gluon propagator The exceptional three gluon vertex The non-exceptional three gluon vertex Results Conclusions Back up

We use a fit ansatz.

We assume that the coupling will have the following
“perturbative” form

αs(p
2)lattice = a+ b log

(

p2

p20

)

+ c log

(

p2

p20

)2

.

Where the parameter “p0” is a momentum point chosen to be in
the middle of our fit range.

“a” is the strong coupling from our fit at the point “p0”.

We use a correlated fit.



The M̃OMgg coupling from the fine lattice
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No observed quark mass dependence.



Continuum M̃OMgg coupling.
(statistical)(pert+a−1 systematic)
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The non-exceptional scheme
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The MOMggg scheme

Project out the scalar part of the vertex, (J.A Gracey (2011)4)

G
(3)
k (p2) =

4

Nc(Nc2 − 1)
Tr

[

Mk,l

(

P
µνρ
l (p1, p2)G

(3)
µνρ(p1, p2)

)]

,

G (3)
µνρ(p1, p2) = 〈Aµ(p1)Aν(p2)Aρ(−p1 − p2)〉.

p21 = p22 = (−p1 − p2)
2 = µ2, requires triplets of external

momenta. Which are only equal up to H(4) breaking effects.
Evaluated using,

g
MOMggg

R (µ2) = Z
3/2
Aµ

(µ2)
G

(3)
1 (µ2)

(

G (2)(µ2)
)3 .

Matching to MS known to two loops.

4arXiv:1108.4806v1 [hep-ph]
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The MOMggg scheme

Project out the scalar part of the vertex, (J.A Gracey (2011)4)

G
(3)
k (p2) =

4

Nc(Nc2 − 1)
Tr

[

Mk,l

(

P
µνρ
l (p1, p2)G

(3)
µνρ(p1, p2)

)]

,

G (3)
µνρ(p1, p2) = 〈Aµ(p1)Aν(p2)Aρ(−p1 − p2)〉.

p21 = p22 = (−p1 − p2)
2 = µ2, requires triplets of external

momenta. Which are only equal up to H(4) breaking effects.
Evaluated using,

g
MOMggg

R (µ2) = Z
3/2
Aµ

(µ2)
G

(3)
1 (µ2)

(

G (2)(µ2)
)3 .

We are finally free of zero-momentum subtractions!

4arXiv:1108.4806v1 [hep-ph]



Fine lattice MOMggg coupling
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Results

Continuum-extrapolated exceptional scheme yields the result, with an
estimate of ≈ 5% finite volume error,

αMS
s (Mz) = 0.1202(11)stat(2)a(39)pert(60??)finitevol.

We have no continuum limit for the non-exceptional case, this has to
be included in the systematics,

αMS
s (Mz) = 0.1290(16)stat(60)pert(??)extrap.
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Conclusions

We have measured αs in the exceptional scheme with good
statistical accuracy using the triple gluon vertex.

We have seen strong sensitivity to finite volume effects in the
zero-momentum gluon propagator, making the applicability of
the exceptional scheme questionable.

The major contributions to the error come from finite volume
effects and matching to perturbation theory.
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Conclusions

We have measured αs in the exceptional scheme with good
statistical accuracy using the triple gluon vertex.

We have seen strong sensitivity to finite volume effects in the
zero-momentum gluon propagator, making the applicability of
the exceptional scheme questionable.

The major contributions to the error come from finite volume
effects and matching to perturbation theory.

We have tried to address the finite volume effects by
implementing the non-exceptional scheme, but we are limited by
statistics.
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Conclusions

We have measured αs in the exceptional scheme with good
statistical accuracy using the triple gluon vertex.

We have seen strong sensitivity to finite volume effects in the
zero-momentum gluon propagator, making the applicability of
the exceptional scheme questionable.

The major contributions to the error come from finite volume
effects and matching to perturbation theory.

We have tried to address the finite volume effects by
implementing the non-exceptional scheme, but we are limited by
statistics.

Controlling the perturbative errors could be performed by,

1 More loops.
2 Finer Lattices. MILC?

s0968574@sms.ed.ac.uk
renwick.james.hudspith@gmail.com
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Back up slides
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Locating the Rome-Southampton window
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