R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusion

Back up

The QCD strong coupling from the lattice three gluon vertex using 2+1 flavour domain wall fermions

Renwick James Hudspith, Peter Boyle and Luigi Del Debbio

SUPA, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK RBC/UKQCD s0968574@sms.ed.ac.uk renwick.james.hudspith@gmail.com

June 26, 2012

Results Conclusions Back u

 α_{s}

R.J.H

The gluon propagator

The exceptional three gluon verte>

The non-exceptional three gluon vertex

Results

Conclusions

Back up

Recent lattice calculations

■ Wilson loop HPQCD : Davies et al. (2008) (Nf=2+1).

Heavy current correlator

HPQCD : Allison et al. (2008), McNeile et al. (2010) (Nf=2+1).

Light current correlator

JLQCD : Shintani et al. (2009) (Nf=2+1).

Schrödinger functional

ALPHA : DellaMorte et al. (2005) (Nf=2).

Vertex functions

Ghost-Gluon ETMC : Blossier et al. (2010) (Nf=1+1). (Nf=2+1+1) See K. Petrov's talk. Triple-gluon RBC/UKQCD : R.J.H , Boyle & Del Debbio

(Nf=2+1).

The gluon propagator

α _s R.J.H	Recipe
The gluon propagator	
The exceptional three gluon vertex	
The non-exceptional three gluon vertex	■ Fix gauge fields to Landau gauge.
Results	
Conclusions	
Back up	

 α_{s}

R.J.H

The gluon

- The exceptional three gluon vertex
- The non-exceptional three gluon verte
- Results
- Conclusion
- Back up

- Fix gauge fields to Landau gauge.
- Take the approx/exact logarithm of links & Fourier transform.

 α_{s}

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon verte

Results

Conclusion

Back up

■ Fix gauge fields to Landau gauge.

■ Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.

 α_{s}

R.J.H

Fix gauge fields to Landau gauge.

Take the approx/exact logarithm of links & Fourier transform.

Measure the gluon propagator.

Measure the gluonic three point function.

Exceptional kinematics : $p_1^2 = p_2^2 = \mu^2, p_2^2 = 0.$

Non-exceptional kinematics : $p_1^2 = p_2^2 = (-p_1 - p_2)^2 = \mu^2.$

 α_{s}

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusions

Back up

Fix gauge fields to Landau gauge.

- Take the approx/exact logarithm of links & Fourier transform.
- Measure the gluon propagator.
- Measure the gluonic three point function.

Exceptional kinematics : Non-exceptional kinematics : $p_1^2 = p_2^2 = \mu^2, p_3^2 = 0.$ $p_1^2 = p_2^2 = (-p_1 - p_2)^2 = \mu^2.$

 Amputate the three point function's legs & perform gluon field renormalisation.

 α_s

R.J.H

The gluon propagator

The exceptional three gluon vertex

- The non-exceptional three gluon vertex
- Results
- Conclusions

Back up

- Fix gauge fields to Landau gauge.
- Take the approx/exact logarithm of links & Fourier transform.
- Measure the gluon propagator.
- Measure the gluonic three point function.

Exceptional kinematics : Non-exceptional kinematics : $p_1^2 = p_2^2 = \mu^2, p_3^2 = 0.$ $p_1^2 = p_2^2 = (-p_1 - p_2)^2 = \mu^2.$

- Amputate the three point function's legs & perform gluon field renormalisation.
- Match to $\overline{\mathrm{MS}}$ at given scale μ . Run to the Z mass.

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusion

Back up

• RBC/UKQCD ensembles, Nf=2+1 DWF.

Iwasaki gauge action.

"Fine"

Ensembles

1
$$32^3 \times 64 \times 16$$

(2.75 fm³ × 5.5 fm).

2
$$a^{-1} = 2.282(28)$$
 GeV.

3 $am_s = 0.03$.

$$am_u = 0.004 (519)$$

 $am_u = 0.006 (745)$

$$\square am_u = 0.008 (308).$$

"Coarse"

1
$$24^3 \times 64 \times 16.$$

(2.74fm³ × 7.3fm)

2
$$a^{-1} = 1.730(25)$$
 GeV.

$$3 am_s = 0.04$$

$$am_u = 0.005 (1555),$$

 $am_u = 0.01 (803),$
 $am_u = 0.02 (573).$

 α_s

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusion

Back up

Fixing to Landau gauge

- Fix to Landau gauge using a Fourier-accelerated algorithm.
- Gluon fields defined as

$$A_{\mu}(x + a\hat{\mu}/2) = \frac{1}{2i} \left(U_{\mu}(x + a\hat{\mu}/2) - U_{\mu}(x + a\hat{\mu}/2)^{\dagger} \right)_{\text{Trf}},$$

$$(X)_{\mathrm{Trf}} = X - \frac{1}{Nc} \mathrm{Tr} [X] I_{Nc \times Nc}.$$

We fix to an accuracy of
$$\frac{1}{V}\sum_x {\it Tr}\left[|\partial_\mu A_\mu(x+a\hat\mu/2)|^2\right] < 10^{-20}.$$

■ And Fourier transform our fields to momentum space. We use the following momentum definitions,

$$ap_{\mu}=rac{2\pi n_{\mu}}{L_{\mu}} \ , \ ilde{p}_{\mu}=2\sin\left(rac{ap_{\mu}}{2}
ight).$$

The Landau condition $\tilde{p}_{\mu}A_{\mu}(p) = 0$ is not a constraint for p=0!

Gluon propagator

α_{s}

R.J.H

The gluon propagator

We amputate the external legs of our three point function using the gluon propagator.

Two point gluonic correlation function, has tensor structure in Landau gauge

$$G^{ab}_{\mu
u}(p^2) \;=\; \left(\delta_{\mu
u} \;-\; rac{p_\mu p_
u}{p^2}
ight) \,G^{ab}(p^2).$$

Measured on the lattice as

$$G^{(2)}(p^2) = \frac{1}{V} \frac{2}{(Nd-1)(Nc^2-1)} G_{\mu\mu}(p^2),$$

$$G_{\mu\nu}(p^2) = \langle \operatorname{Tr} [A_{\mu}(p)A_{\nu}(-p)] \rangle.$$
he (Nd = 1) factor is valid only for $p \neq 0$, conventionally

The (Nd 1) factor is valid only for $p \neq 0$, conventionally use

$$G^{(2)}(0) = \frac{1}{V} \frac{2}{Nd(Nc^2 - 1)} G_{\mu\mu}(0).$$

Ambiguity in the gluon normalisation at zero momentum?

 α_s

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon verte:

Results

Conclusion

Back up

Testing the anisotropic gluon propagator

Are all polarisations equivalent for the zero momentum gluon propagator on an asymmetric $(L_t > L_{x,y,z})$ lattice?

 α_s

R.J.H

The gluon propagator

The exceptional three gluon vertex

The

non-exceptional three gluon vertex

Results

Conclusions

Back up

Testing the anisotropic gluon propagator

Are all polarisations equivalent for the zero momentum gluon propagator on an asymmetric $(L_t > L_{x,y,z})$ lattice?

- Only asymmetric aspect of measurement at zero momentum is the volume.
- A spatial-temporal difference **must** be a finite volume effect.
- Expect G_{ii} (spatial propagator) and G_{tt} (temporal propagator), to be equivalent at higher momenta.
- Remove field renormalisation by taking the ratio G(2)(p2)/(p2), a direct measure of anisotropy effects. Allowing comparisons of anisotropies at different lattice spacings.

R.J.H

Zero momentum gluon propagator breaks Euclidean symmetry

The exceptional three gluon verte

The non-exceptional three gluon vert

Results

Conclusion

Back up

Does this compromise the measurement in the exceptional scheme?

There is no *obvious* way to control finite volume effects for the zero momentum gluon propagator. Large breaking of Euclidean geometry by our volume. $G^{(2)}(0)$ is finite volume compromised.

The exceptional scheme

The $MOM_{\sigma\sigma}$ scheme

α5

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusions

Back up

Used in Parinello et al. (1994,1996) ¹, Boucaud et al. (1998)² & perturbative matching from Chetyrkin & Rétey (2000) ³.

- $p_1^2 = p_2^2 = \mu^2, p_3^2 = 0.$
- Project out the scalar amplitude,

$$egin{aligned} G^{(3)}(p^2) &= rac{4}{(Nd-1)Nc(Nc^2-1)} \left(\delta_{\mu
u} - rac{ ilde{p}_{\mu} ilde{p}_{
u}}{ ilde{p}^2}
ight) rac{ ilde{p}_{
ho}}{ ilde{p}^2} G_{\mu
u
ho}(p^2), \ G_{\mu
u
ho}(p^2) &= \langle ext{Tr}\left[A_{\mu}(p)A_{
u}(-p)A_{
ho}(0)
ight]
angle. \end{aligned}$$

Renormalise the gluon fields using $Z_{A_{\mu}}(p^2) = \tilde{p}^2 G^{(2)}(p^2)$, $g_R^{\widetilde{MOM}_{gg}}(\mu^2) = Z_{A_{\mu}}(\mu^2)^{3/2} \frac{G^{(3)}(\mu^2)}{(G^{(2)}(\mu^2))^2 G^{(2)}(0)}.$

¹arXiv:hep-lat/9405024v1 , arXiv:hep-lat/9605033v2 ²arXiv:hep-ph/9810322v2 ³arXiv:hep-ph/0007088v1

R.J.H

The gluon propagator

The exceptional three gluon vertex

- The non-exceptional three gluon vertex
- Results
- Conclusion
- Back up

We use a fit ansatz.

We assume that the coupling will have the following "perturbative" form

$$\alpha_s(p^2)_{\text{lattice}} = a + b \log\left(\frac{p^2}{p_0^2}\right) + c \log\left(\frac{p^2}{p_0^2}\right)^2.$$

- Where the parameter "*p*₀" is a momentum point chosen to be in the middle of our fit range.
- "a" is the strong coupling from our fit at the point "p₀".
- We use a correlated fit.

The \widetilde{MOM}_{gg} coupling from the fine lattice

No observed quark mass dependence.

Continuum \widetilde{MOM}_{gg} coupling. (statistical)(pert+ a^{-1} systematic)

The non-exceptional scheme

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusion

Back up

The *MOM_{ggg}* scheme

Project out the scalar part of the vertex, $(J.A \text{ Gracey } (2011)^4)$

$$egin{aligned} G_k^{(3)}(p^2) &= rac{4}{Nc(Nc^2-1)} \mathrm{Tr} \left[M_{k,l} \left(P_l^{\mu
u
ho}(p_1,p_2) G_{\mu
u
ho}^{(3)}(p_1,p_2)
ight)
ight], \ G_{\mu
u
ho}^{(3)}(p_1,p_2) &= \langle A_\mu(p_1) A_
u(p_2) A_
ho(-p_1-p_2)
angle. \end{aligned}$$

p₁² = p₂² = (−p₁ − p₂)² = μ², requires triplets of external momenta. Which are only equal up to H(4) breaking effects.
 Evaluated using,

$$g_R^{MOM_{ggg}}(\mu^2) = Z_{A_{\mu}}^{3/2}(\mu^2) rac{G_1^{(3)}(\mu^2)}{\left(G^{(2)}(\mu^2)
ight)^3}.$$

 \blacksquare Matching to $\overline{\mathrm{MS}}$ known to two loops.

⁴arXiv:1108.4806v1 [hep-ph]

R.I.H

non-exceptional three gluon vertex

The *MOM_{ggg}* scheme

Project out the scalar part of the vertex, $(J.A Gracey (2011)^4)$

$$\begin{split} G_k^{(3)}(p^2) &= \frac{4}{Nc(Nc^2-1)} \mathrm{Tr} \left[M_{k,l} \left(P_l^{\mu\nu\rho}(p_1,p_2) G_{\mu\nu\rho}^{(3)}(p_1,p_2) \right) \right], \\ G_{\mu\nu\rho}^{(3)}(p_1,p_2) &= \langle A_{\mu}(p_1) A_{\nu}(p_2) A_{\rho}(-p_1-p_2) \rangle. \end{split}$$

 $\mathbf{p}_1^2 = p_2^2 = (-p_1 - p_2)^2 = \mu^2$, requires triplets of external momenta. Which are only equal up to H(4) breaking effects. Evaluated using,

$$g_R^{MOM_{ggg}}(\mu^2) = Z_{A_{\mu}}^{3/2}(\mu^2) \frac{G_1^{(3)}(\mu^2)}{(G^{(2)}(\mu^2))^3}.$$

We are finally free of zero-momentum subtractions!

⁴arXiv:1108.4806v1 [hep-ph]

Fine lattice MOM_{ggg} coupling

Results

 α_{s}

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusion

Back up

Continuum-extrapolated exceptional scheme yields the result, with an estimate of $\approx 5\%$ finite volume error,

$$\alpha_{s}^{\overline{\text{MS}}}(Mz) = 0.1202(11)_{\text{stat}}(2)_{a}(39)_{\text{pert}}(60??)_{\text{finitevol}}.$$

We have no continuum limit for the non-exceptional case, this has to be included in the systematics,

 $\alpha_s^{\overline{\text{MS}}}(Mz) = 0.1290(16)_{\text{stat}}(60)_{\text{pert}}(??)_{\text{extrap}}.$

Conclusions

The gluon propagator

The exceptional three gluon vertex

 α_{s}

R.I.H

- The non-exceptional three gluon vertex
- Results
- Conclusions

Back up

- We have measured α_s in the exceptional scheme with good statistical accuracy using the triple gluon vertex.
- We have seen strong sensitivity to finite volume effects in the zero-momentum gluon propagator, making the applicability of the exceptional scheme **questionable**.
- The major contributions to the error come from finite volume effects and matching to perturbation theory.

Conclusions

The gluon propagator

The exceptional three gluon vertex

 α_{s}

R.I.H

- The non-exceptional three gluon vertex
- Results
- Conclusions

Back up

- We have measured α_s in the exceptional scheme with good statistical accuracy using the triple gluon vertex.
- We have seen strong sensitivity to finite volume effects in the zero-momentum gluon propagator, making the applicability of the exceptional scheme **questionable**.
- The major contributions to the error come from finite volume effects and matching to perturbation theory.
- We have tried to address the finite volume effects by implementing the non-exceptional scheme, but we are limited by statistics.

Conclusions

 α_{s}

R.J.H

The gluon propagator

The exceptional three gluon vertex

The non-exceptional three gluon vertex

Results

Conclusions

Back up

We have measured α_s in the exceptional scheme with good statistical accuracy using the triple gluon vertex.

- We have seen strong sensitivity to finite volume effects in the zero-momentum gluon propagator, making the applicability of the exceptional scheme **questionable**.
- The major contributions to the error come from finite volume effects and matching to perturbation theory.
- We have tried to address the finite volume effects by implementing the non-exceptional scheme, but we are limited by statistics.
- Controlling the perturbative errors could be performed by,
 - 1 More loops.
 - 2 Finer Lattices. MILC?

s0968574@sms.ed.ac.uk renwick.james.hudspith@gmail.com

The gluon propagator		The exceptional three gluon vertex	The non-exceptional three gluon vertex	Results	Conclusions	Back up	
α_s							
R.J.H							
The gluon propagator							
The exceptional three gluon vertex							
The non-exceptional three gluon vertex							
Results							
Conclusions			Pack up clides				
Back up	Dack up slides						

The coarse lattice coupling run to Mb The fine lattice coupling run to Mb