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Motivation

Currently, the β–function is very much in the focus of our interest. At the extreme ends,

two scenarios are possible:

1. Infrared fixed point
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2. Infrared attractive point

Supersymmetric Yang-Mills
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The theory has two phases,

one which is asymptotically free

and another which is strongly

coupled in the infrared, with

α∗ being an infrared attractive

point

The theory flows to α∗ in the

infrared, both from the small

and large α domain

To find out what is happening in QCD, we need to map out the renormalization group flow of

the running coupling constant over a wide range of scales from the ultraviolet to the infrared



The idea

We start from rectangular L × T Wilson loops W (L, T ) and the corresponding Creutz

ratios R(L, T )

R(L, T ) =
W (L, T ) W (L − 1, T − 1)

W (L, T − 1) W (L − 1, T )

= 1 +

N
X

n=1

rn(L, T ) g
2n

Two options

W (L, T ) =
T≫L

C e
−V (L) T

W (L, L) = C e
−V (L) L

where g2 is the bare lattice coupling. Using

V (L) = −
4

3

g2
V (L)

L

and choosing the second option by writing R(L) = R(L, L), rn(L) = rn(L, L), we

then get the running coupling

g
2
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1
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ln R(L) = g

2
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From the expressions for the running coupling g2
V (L) we derive the β–function in the

potential or V scheme

β(gV (L−1)) =
1

2 gV (L−1)

g2
V (L) − g2

V (L−1)

ln L/(L−1)

with

β(gV ) = −
β0

16π2
g

3
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g
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V − · · · β0 = 11 , β1 = 102

universal
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Computation of Wilson loops

Action

S = β
X

P

»

1 −
1

6
Tr

“

UP + U
†
P

”

–

We employ numerical stochastic perturbation theory (NSPT), in which the perturbed link

variables Ux,µ are computed from a stochastic evolution in fictitious time τ driven by the

Langevin equation

∂

∂τ
Ux,µ(τ ; η) = i [∇x,µ S(U) − ηx,µ(τ)] Ux,µ(τ ; η)

V = 124 , N = 20

arXiv:1205.1659 [hep-lat]



Valid definition of gV (L) ?

∆ V (L) = V (L) − V (L−1) = −lnR(L)

∝ 1/(L−1/2)
2

∆ V (4)/∆ V (3)

Expect 1.96

Obtain 1.93
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β–function

Test

First two coefficients

L|T β0 β1

4|4 10.8

3|3 121

3|4 108
11.8

3|5 106



β–function from L = 4



Supersymmetric Yang-Mills N = 3

β(g) = −
9

16π2

g3

1 − 3g2/8π2



Padé fit g
3
[2, 1] to convergent sum ⇐ Nonperturbative contribution negligible (!?)

β(g) = −
β0

16π2

g3
`

1 + b2g
2 + b4g

4
´

1 + d2g2
g

3
[2, 3] ⇔ SUSY type RG flow

d2 < 0



Running coupling g3[2, 1]



Conclusions

• Wilson loops from NSPT lend themselves to a calculation of the running

coupling to twenty loops (and possibly higher)

• This enables us to map out the renormalization group flow of the running

coupling over a wide range of scales from the ultraviolet to the infrared

• No sign of walking and of a conformal window is found

• β–function appears to change sign (like in the case of the SUSY Yang-Mills

theory) at g2
V ≈ 12 not through zero, as it would happen at a regular fixed

point, but rather through pole

• Hope to repeat the calculations on rectangular N3
S × NT lattices with time

extent NT ≫ NS using boosted NSPT


