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Introduction

We study Wilson loop operators W (C ) in 4D Euclidean SU(N) pure gauge
theory.
(C is a closed, non-selfintersecting, continuous curve in R4, with a finite number
of kinks→ rectangles on the lattice)

Perimeter and corner divergences of W require smearing.

Extra (continuous) smearing parameter s represents effective thickness of C
(
p

s: observer’s resolution of localized objects).
At large-N : sharp transition between weakly coupled short distance regime and
qualitatively different strongly coupled long distance regime:

Small loops: insensitive to the compact nature of SU(N); large loops: full group is
explored (key ingredient for confinement).
At the transition point: gap in the eigenvalue spectrum of the Wilson loop matrix
closes;
natural point where PT and a long distance description (→ effective string theory)
could be matched.
Traces of Wilson loops remain smooth through the transition (even at N =∞).

Here: determine by lattice methods how an effective string description on the
strong coupling side of the transition and close to it works in detail.
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Introduction

Expectation from effective string theory for asymptotic expansion of large loops around
minimal area configuration (Nambu-Goto + boundary terms):
for a dilated loop (C → ρC ), asymptotically as ρ→∞:

log(W (ρC ))∼−σρ2Areamin(C ) + Γ0ρ Length(C ) + Γ1(C ) log(ρ) + Γ2(C ) + Γ3

+Γ4(C )/ρ2 +O (1/ρ3) .

String tension σ > 0 used to set the scale from the outside in EST.

EST cannot make predictions for perimeter and corner terms: Γ0, Γ3 are
non-universal numbers, independent of C , dependent on smearing
(diverge like 1/

p
s and logκ s for s→ 0).

Γ1(C ), Γ2(C ), Γ4(C ): universal scale-invariant functions of the shape of C

Potential problem: interference between further smearing-dependent subleading terms
and smearing-independent terms coming from EST expansion.
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Simulation parameters

Averages of smeared rectangular (L× L, L× (L+ 1), L× 2L) Wilson loops on a
symmetric hypercubic lattice are obtained from 160 uncorrelated gauge fields.

Gauge action is of the single-plaquette Wilson type.

Wilson loop on the lattice:

WN (L1, L2, b, S, V ) =
1

N
〈Tr
∏

l∈C

Ul〉 .

(product over links l around rectangle of sides L1,2).

We mainly use couplings 0.359≤ b = β

2N2 ≤ 0.369,
N -values 7, 11, 13, 19, 29,
smearing levels 0.2≤ S ≤ 0.4.

All fits are applied to

wN (L1, L2, b, S, V ) =− log WN (L1, L2, b, S, V ) .
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Square loops: infinite-N,V limits

First step: limN→∞
�

limV→∞ wN (L, b, S, V )
�

for square L× L loops.
Potential shortcut: large-N reduction (requires tests and fits; finite-volume effects
depend on V , N , b, and loop size L)

Method 1)
At fixed N , use volumes sufficiently large for finite-volume effects to be negligible
(V = 244, 184, 144, 124 for N = 7, 11, 19, 29, resp.), then fit

wN (V =∞) = w∞(V =∞) +
a1(V =∞)

N 2 +
a2(V =∞)

N 4 .

Method 2)
First take N →∞ at fixed V (fitting 1/N 2, 1/N 4 corrections as above).
No volume dependence in the inf.-N theory (as long as center sym. unbroken):
w∞(V ) = w∞(V =∞).

2a) w∞(V = 124) from N = 11, 13, 19, 29
2b) w∞(V = 144) from N = 7, 11, 13, 19
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Square loops: infinite-N,V limits

Agreement between the three results at their stat. accuracy of about 0.1%.

Truncating the expansion at order 1/N 2 results in very large χ2/Ndof (i.e., we
cannot set a2/N

4 = 0)

For V = 124 case: including N = 29 result is crucial; including N = 7 would
require 1/N 6 correction.
When V gets close to critical size at which center symmetry breaks, we need to
go to higher N ’s to determine limN ,V→∞ wN (V ).

computation time ∼ N 3V :
method 2a) [V = 124] is 1.75 times more expensive than method 2b) [V = 144];
method 1) [large V ’s] is 2.5 times more expensive than method 2b).

However, we became confident that we have correctly determined
limN ,V→∞ wN (L, b, S, V ) only after having obtained agreeing results from 1), 2a)
and 2b).
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Square loops: lattice string tension (at infinite N)

For square L× L loops (fixed b, S: w∞(L)≡ limN ,V→∞ wN (L, b, S, V )):

w∞(L) +
1

4
log L2 = c1 + c2 L+σL2 +O

�

1

σL2

�

.

The log term comes from the effective string description (including it gives good
fits while excluding it gives bad fits).
We have also fitted its coefficient using L× L, L× L+ 1, and L× 2L loops and
obtained agreement with the predicted value of 1/4.

Neglecting corrections of order 1
σL3 , we fit

1

2

�

w∞(L+ 1)−w∞(L) +
1

2
log
�

1+
1

L

��

= σ
�

L+
1

2

�

+
c2

2
+O

�

1

σL3

�

to a straight line as a function of L+ 1
2

to determine σ and the perimeter
coefficient c2.

For the b and S values we use: 5× 5 loops fall in the vicinity of the large-N
transition (smaller loops have a gap in their eigenvalue distribution). For our fits
we use square loops with 6≤ L ≤ 9.
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Lattice string tension
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Plots of ∆w
2
= 1

2

�

w∞(L+ 1)−w∞(L) +
1
2

log
�

1+ 1
L

��

[obtained with method 1)]
at S = 0.4 and b = 0.36, 0.362, 0.365, 0.368

Error bars are not visible in the plot. Straight lines show linear fits (using
6< L+ 1

2
< 9).
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Continuum limit

As expected, σ does not depend on smearing parameter S (within statistical
errors; which decrease with increasing S).

Extrapolations to continuum carried out with scale (roughly equal to Lc where
center symmetry breaks)

ξc(b) = 0.26

�

β̄1

β̄2
0

+
bI (b)

β̄0

�− β̄1
2β̄2

0
exp

�

bI (b)

2β̄0

�

exp

�

β̄2

2β̄2
0 bI (b)

�

with tadpole improved coupling bI (b) = limN ,V→∞ b WN (L = 1, b, S = 0, V )
and coefficients β̄i = βi/N

i+1 for large N .

Use two different two-parameter fits of the relation between σ(b) and ξc(b)

σ(b) =
d0

ξc(b)2
+

d1

ξc(b)4
,

1

ξc(b)2
= f −1

0 σ(b) + f1σ(b)
2

Infinite-N continuum string tension: limb→∞σ(b)ξ2
c (b) = 1.6(1)(3)

(sys error: two fits d0, f0; ranges 0.359≤ b ≤ 0.369 and 0.362≤ b ≤ 0.367;
different methods for limN ,V→∞).

Robert Lohmayer Large-N string tension from rectangular Wilson loops Lattice 2012 11



Introduction String tension Shape dependence Conclusions

Continuum limit
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String tension from limN ,V→∞ wN (L, b, S, V ) obtained with:

method 1) [large V ’s], method 2a) [V = 124] method 2b) [V = 144].

Solid and dashed lines: different fit functions (0.359≤ b ≤ 0.369)
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Continuum string tension: Wilson and Polyakov loops

In terms of ΛMS , our result is σ/Λ2
MS
= 3.4(2)(6).

From Polyakov loop correlators, the N =∞ continuum result is [Allton, Teper,
Trivini (2008)]: σ/Λ2

MS
= 3.95(3)(64).

Independent study [Gonzalez-Arroyo, Okawa (2012)→ next talk] of rectangular
Wilson loops: σ/Λ2

MS
= 3.63(3) (with the same cont-extr. method).

Disagreement at statistical level; systematic errors too large to claim evidence for
a difference.
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Shape-dependence: non-square loops

Study the shape dependence of the size-independent term (c1) in wN =− log WN .

Scaling-invariant shape parameter for rectangular L1 × L2 loops:

ζ=
L1

L2
+

L2

L1
.

At fixed b, S, V , and fixed finite N , we expect

wN (L1, L2) +
1

4
log L1 L2 = c1,N (ζ) + c2,N

L1 + L2

2
+σN L1 L2 +O

�

1

σN L1 L2

�

.

Using σN , c2,N from square loops, we determine c1,N

�

ζ= 5
2

�

from L× 2L loops,
then compare it with c1,N (2)

From square and almost square L× L± 1 loops, we obtain c′1,N (2).

Allowing the coefficient of the log L1 L2 term to become a fit parameter and
expanding c1(ζ) around ζ= 2, we simultaneously fit L× L, L× L+ 1, and
L× 2L loops: confirmation of the expected value of 1/4 and previous results for
ζ-dependence of c1.
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Example for −c′1,N (2) as a function of b at S = 0.4:

0.358 0.360 0.362 0.364 0.366 0.368
b

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-c1'H2L

N = 7
N = 11
N = 19

No significant dependence on b, N , S

The effective string prediction is c′1(2)≈−0.162276.

Similar deviation from effective string theory observed by Gonzalez-Arroyo and
Okawa [→ next talk]
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Shape dependence in PT

For a rectangular loop in tree-level continuum perturbation theory:

wPT
N (l1, l2, s) =

g2C2

2





1

(2π)
3
2

�

l1 + l2p
s

�

+
1

π2 log
�

s

l1 l2

�

+ h0

�

l2
l1

�

+O
�

s

l2
i

�





(h0 has an integral representation in terms of error functions).

Terms divergent as s→ 0 (outside the reach of eff. string theory) enter additively
in wN =− log WN .

Discrepancy with effective-string prediction for shape-dependent term might be
explained if we assume that measured wN is simply given by a sum of separate

effective-string and tree-level PT contributions (would require g2N
4π
≈ 0.49; about

half the value obtained by matching s-dep. terms).

Open question: Could even asymptotically large Wilson loops show elements of
shape dependence determined by field theory at short distances?

For arbitrary angles between the tangents at the kinks: Does effective-string
framework allow inclusion of specific kink terms which could reproduce the
perturbative angle dependence?
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Conclusions

Within estimates for systematic errors, results for large-N string tension from
Wilson loops agree with those obtained from Polyakov loop correlators.

Stringy parametrization for Wilson loops holds relatively well all the way down to
the large-N transition point.

Situation is less clear, even for large loops, at the level of purely shape-dependent
parameters.

Recently [Billo et al., 2012], effective string theory predictions have been
confirmed numerically for 3d Z2 gauge theory.

Situation for smeared SU(N)Wilson loops (with kinks) might be different. Shape
dependence of planar Wilson loops presents interesting case for testing the
limitations of the effective string approach. Further numerical checks are required
(loops with different corner angles, self-intersections,...).
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A1. String tension at finite N

We determine the string tension σN at N = 7,11, 19,29 to get a feel for the
commutativity of N →∞ and b→∞.
At fixed b: σN (b) = σ∞(b) +

h(b)
N2 (with h≈ 10σ∞).

Finite-N corrections are absorbed by the improved coupling bI (b, N);
no significant N -dependence for the continuum limits

0.200 0.205 0.210 0.215
bI

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Σ

N = 7
N = 11
N = 19
N = 29
N =∞
(from w∞)
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A2. Smearing dependence: string tension
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Example for N = 11, b = 0.365, V = 184.
σ determined using square loops with 6≤ L ≤ 9.
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A3. Smearing dependence: perimeter term

0.5 1.0 1.5 2.0 2.5 3.0 3.5
S-1� 2

0.5

1.0

c2

Perimeter coeff. c2 (for N = 11, b = 0.365). Fit: c2 =−0.2097+ 0.4279/
p

S.

No divergence as S→ 0 on the lattice; window where we see the behavior that
would cause a divergence in the continuum.

Tree-level PT perimeter term: g2CF
2

1

(2π)
3
2

2lp
s

(above example: → g2N
4π
≈ 1.08 )
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A4. Smearing dependence: constant term

0.1 0.2 0.3 0.4 0.5
S

-1.5

-1.0
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c1

S-dependence of the L-independent term c1 is consistent with a log(S), S→ 0,
divergence (example for N = 11, b = 0.365: c1 =−0.2538+ 0.3278 logS).

Corner div. at tree-level: g2CF
2

1
π2 log s (example: → g2N

4π
≈ 1.03).
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A5. Square loops: infinite-N,V limits
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Plots of wN (L = 9, b = 0.368, S = 0.4, V ) as a function of 1/N 2:

V = 124, V = 144, V = 244 (at N = 7), V = 184 (at N = 11).
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