N — oo Limit of the Principal Chiral Model
(and applications to Gauge Theories)
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1. What 1s the Motivation?

Lattice gauge theories can be thought of many copies of
the (integrable) principal chiral sigma model, coupled
together.

Bardeen, Pearson (1976) Rabinovici (1980) (light-cone
gauge).

Durhuus, Frohlich (1980) (no gauge fixing).

Griffin (1991) (light-cone gauge).

P.O. (2005-) (axial gauge). The sigma models decou-
ple in an anisotropic weak-coupling limit. Then the
exact S-matrix and/or exact form factors may be used
to study what happens as the isotropy is gradually re-
stored.
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3D gauge theory with two small couplings, gy and g,
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As g — 0, the field strength in the 0, 1-planes becomes
zero. The system reduces to principal chiral models,
one for each z?, in the 0, 1-layers (between the planes).
We can study the theory as g is increased.

Solvable model with confinement. High-energy /eikonal
(large s, small t) limit. Verlinde+ Verlinde(’93), McLer-
ran+ Venugopalan(’94). The bare couplings in two space
and one time dimension are all WEAK.
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2. What is calculable?

Corrections to the ¢g-potential and the glueball spec-
trum for g > 0. The techniques use the exact S-matrix
and /or exact form factors of the principal chiral model.

The integrabilty of the quantized principal chiral sigma
model is essential.
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4. What are the problems?

A. Couplings are not all weak in 34+1. The 141 field
theory in the high-energy/eikonal approach is probably
more complicated than the sigma model. Anisotropic
R.G.: P.O.4J. Xiao (2008), P.O. and A. Cortés Cubero
(2011, 2012).

B. In 2+ 1 dimensions, the scaling limit is not the stan-
dard one (CROSSOVER). This is because we need

2 _
gh” < gy texp—4n/(gaN) .

The only way I know to beat this problem is a real-space
R.G. in the 2-direction. Konik and Adamov (2009) did
this for the closely related 3D Ising model.

C. No way to study potentials for N > 2 (until now).
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5. How does it work?

Hamiltonian Formulation

Lattice spacing — 0 in the 0, 1-directions, solve Gauss’
law in the axial gauge A; = 0 (Mandelstam (1977)). Re-
maining field:

Lattice Gauge Field:

a:2+a

U(x) = Us(x) = expi / dy”As(2”, ' ) .

12

Currents:

jgj(x)b =1iTr¢,0,U () Ulz)', jf}(a:)b = 1Tr ¢, U(a:)T(’?MU(:U) ., nu=0,1.
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H = Hy+ H;,

to =3 Hrew =3 [ ot sl e+ L a2

Z/dx/dy

X ]O <y L )b_j§<y17 CCQ — CL)[J,

slat =o' o (@t 2®) =g (!, 2% — a)y]

Residual Gauss’ law at each 22, on physical states:
/al:t:1 Gy (2t 2%, — gt et —a)| v =0.
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Glueball for SU(2)

Bullets are massive “solitons” of transverse electric flux.
Red lines are longitudinal electric flux. Flux can ter-
minate on quarks.
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6. What is new?
Progress on the SU(N)peq X SU(N )gight Sigma model:

£:%fd2xTr(9“UT8MU, U e SUN), u=0,1,

95

in the 't Hooft limit, N — oo, with fixed gyv N. Feyn-
man diagrams are planar. Correlation functions of

O(z) ~ 272U (x)

are not those of a free field. Note ~, instead of =
(equality only for v.e.v.’s.)
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Exact 1/N-expansion of form factors:

P.O., “Summing Planar Diagrams by an Integrable Boot-
strap”, Phys. Rev. D84, 105005 (2011). Field form
factors of 1, 3 excitations.

P.O., “Summing Planar Diagrams by an Integrable Boot-
strap IT1”, arXiv:1205.1763 [hep-th| (2012). All the field
form factors = exact correlation functions.

A. Cortés Cubero, “Multiparticle Form Factors of the
Principal Chiral Model at Large N”, arXiv: 1205.2069
[hep-th] (2012). Current form factors of 2, 4 excitations.
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S Matrix of PCSM
Polyakov+Wiegmann (1983), Abdalla®+Lima Santos (1984),
Wiegmann (1984)

Spectrum: 1M, = mlssl?rfz;r//NN)>, r=1,...,N — 1.

Elementary color dipoles r = 1 (qq), and bound states r > 1.
Elementary antiparticle: » = N — 1. 0 = 65, = 0, — 0, relative
rapidity, mcosh6; = E;, msinh6; = p;.

(r=1) by (r=1) S-matrix, sans kinematic factors:

S1(0)= ijﬂﬁgﬁlﬂﬁi Scan(t) @ Scan(0),

(60 /27 +1)(—i0 /2r—1/N i
SCGN(H):FEiH?QWiR—f /N)/F(—ie//mr;<11 - % )

Crossing (0 — «i — 0), fusion, give full S matrix.
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1/N-Expansion of the(Generalized) S Matrix

Forget these expressions (if you like)!
't Hooft limit is N — oo, holding m = m; fixed.

The binding energy vanishes, unless r = N — 1, z.e. an
antiparticle. Nothing else survives.

271 A2
]l ——(PR1+1®R P) —
Ng L @IH1®P) = S

Su(d) = [1+O(1/N?)] PeP|.

(See the figure on the next slide!)
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Zamolodchikov Algebra of Generalized
Creation Operators

AL (01 arty Ab(02)ags, = Spp(012) 2200 AL (62)cyd, AL(01) cya,
AT (0,), . AT (6 — S a(Byo)22der o (g A (0
A( 1)b1a1 A< 2>b2a2 AA( 12)b1a1;b2a2 A( 2)d2€2 A( 1)d101
AL (01)aghy A4 (02)1ar = Spa(012)225750% A (0) e, A (01)
P\Y1)aib; *¥A\Y2 )boas PA\Y12 arby:boay *rA\Y2)docy 2 p\Y1)erdy »
P = Particle, A = Antiparticle.

Associativity implies Yang-Baxter equation.

As N — oo, A’s commute. The master field is built
from A’s, A’s.
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Smirnov’s form-factor axioms:
These follow from the LSZ formulas and integrability.

1. Scattering Axziom (Watson’s theorem):

(0[D(0)ngap AL, (01)cy - - A (0)c,20) | (O1)cy,, - - Af, (Oar) ey [0)

/ /
CiC)

= Slj]j+1<9j j+1) 0j0j+1<0‘®<0)boa0 Q[M@l)@

X e X Q[;j/,H(QjJrl)C}HQ%(Hj)C} -2 (0ar)cy[0),

where [, k=1,...,M is P or A (particle or antiparticle)
and C} denotes a pair of indices (e.g. aiby, for C; = P
and bpay, for Cy = A).
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2. Periodicity Axiom (Generalized Crossing):

(01D (0)sy0 A (01)c, AL (B2)c, -+ AL (6,)c,]0)
= (0(0)pgap AL (6 — 2mi)c, AL (O, - AL (Oar-1)c,,[0).

3. Annihilation-Pole Axiom:

Res [y, =i (O] P(0)agag A}, (61) 2], (B2)cs - -+ AL (6),]0)

= —21< 0 ’ q)m)boao ‘m}2(92)0§m§3<62)0§ . .m}n—l(en_1>cé—1|o>

X [51112(912> ecyonis(013) by Snn, 1 (Bia-1) p "o
) 015 025 Cs ) o
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4. Lorentz-Invariance Axiom: For the scalar operator
®, and boost A6,

(O1(0)ngay A}, (01 + A0)cy - - A] (Bar + A) sy, |0)
— <O‘q)(0)boa0 qu(el)ﬁ o 'QQM(QM)CMM%

5. Bound-State Axiom: There are poles on the imagi-
nary axis of rapidity differences 60;;, due to bound states.

6. Minimality Axiom. Form factors are holomorphic,
except possibly for bound-state poles or annihilation
poles, for rapidity differences §;;, in the complex strip
0 <JIm by < 2m.
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Renormalized-Field Form Factors

(O]P(0)pyag

\A, O1, b1, ar; -+ A, On—1, b1, ani—1; P, Oag ang bags -+ -5 P, Oapr—1, aspr—1, b2M—1>
| M—1
— NM_1/2 Z FOT(617 927 R 92M—1> 5CL] aa(j)+M5bj bT(j)—l—M I
o, TES) =0

where F = F' + O(1/N),

(—4m)M- 1K,

E) (601,09, ..,02, 1) = — . .
Hjj\ill[ej — O (jyear + 05 — Oy + 7]

?

and where

1, o(j) #7(j), forall j
KO’T — .
0, otherwise
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2-Pt. Wightman Function to Order 1/N

—1 1 _
Z71 0/Tr U)U(0)']0) = /

1 00
+ E;/del”'degqu €eXP

21 1

+ O
i1 <(9] — (9j+1)2 + 7T2

where z* = (20 £+ 21)/2.

do

7
20+1

i Z m(x e’ 4+ e %)
=1

(%)

The renormalization factor Z is determined by

U(0)U(0)F = 1.
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A. Cortés Cubero’s current form factors.

Two-excitation form factor:

< 0 |j/§<0>CLOCO|A7 (917 bla ai, P7 927 b27 CL2>

271

1 1
— (pl - pQ)M m (5aoa2500a1 - N(Saocoéamz) 5b1b2 + O (ﬁ) :
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Four-excitation form factor:

< 0 |j5(0>&OCO|A7917blva’l;A7927b27a’2;Pa 9370’37[)3; P7 94,&4,b4>

8%
= [Pt p2 = Py — paly
<N\ - = (5%@35@160 - %5%005&1@3) Sy Oty
T O + ) (0 i I (5%@45@100 - %5%005@1@4) Oayay ObybyOboby
T 0+ 1) (003 i o 0 (5%@35@260 - %&m%émg) Oaya4Ob1byOboby

1 1
(914 + 7Ti)<(913 + m><923 + m) (5%&45@260 - N5a0605a2a4) 5@1@35515455253]

e (NL) (1)
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7. What comes next?

e Eixplicit calculation of renormalization constants. Com-
parison with perturbation theory.

e Exact correlation functions of currents.

e Comparison of field and current form factor correla-
tions. O.P.E.’s.

e Application to (241)-dimensional gauge theories in
the 't Hooft limit.

e Attack crossover with real-space RG.

THANK YOU!
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