

Volume dependence in 2+1 Yang-Mills theory

Margarita García Pérez

In collaboration with

Antonio González-Arroyo Masanori Okawa

- Investigate the volume and large N dependence of Yang-Mills theories.
- Tool use the volume dependence to control non-perturbative effects

SET UP

Toy model - SU(N) pure gauge Yang-Mills in 2+1d 2-d torus x R of Size - L With a magnetic flux - m Dimensionful 't Hooft coupling - $\lambda = g^2 N$

We will see that the non-perturbative effects are controlled by the magnetic and electric fluxes and the dimensionless combination λLN

A few basics

Introducing magnetic flux through twisted boundary conditions

$$A_i(x + L_j e_j) = \Gamma_j A_i(x) \Gamma_j^{\dagger}$$
$$\Gamma_1 \Gamma_2 = e^{\frac{2\pi i m}{N}} \Gamma_2 \Gamma_1$$

m integer mod N - magnetic flux

m and N co-prime

Boundary conditions imply momentum quantized in units of NL like on a box of size (NL)²

$$\vec{p} = \frac{2\pi}{NL}\vec{n}, \quad n_i \in \mathbb{Z}, \quad \vec{n} \neq \vec{0} \pmod{N}$$

One-gluon states characterized by the electric flux related to the gluon momentum through

 $e_i = -\bar{k}\epsilon_{ij}n_j$, with $m\bar{k} = 1 \pmod{N}$

Generated by Polyakov loop operators (winding)

 N^2 electric flux sectors

Spectrum from Polyakov loop correlators

Tree level PT

Confinement

$$\left(\frac{2\pi|\vec{n}|}{NL}\right)^2 \quad \Longrightarrow \quad \sigma_{\vec{e}} \ l_{\vec{e}}$$

Discuss energy spectrum vs NL from PT to confinement

Perturbation theory

One-gluon states with electric flux $e_i = -k\epsilon_{ij}n_j$

$$\frac{E^2}{\lambda^2} = \left(\frac{2\pi|\vec{n}|}{NL\lambda}\right)^2 - \frac{4\pi}{NL\lambda}G(\frac{\vec{e}}{N})$$

Note $NL\lambda$ dependence

For fixed
$$\vec{n}$$
 and $\frac{\vec{e}}{N}$

 $N \leftrightarrow L$

Gluon self-energy on-shell projected $\perp \vec{n}$

$$G\left(\frac{\vec{e}}{N}\right) = \frac{1}{16\pi^2} \int_0^\infty \frac{dx}{\sqrt{x}} \left(\theta_3^2(0,x) - \prod_{i=1}^2 \theta_3(\frac{e_i}{N},ix) - \frac{1}{x}\right)$$

Jacobi Theta function

$$\theta_3(z, ix) = \sum_{n \in \mathbf{Z}} \exp\{-x\pi n^2 + 2\pi i nz\}$$

Lattice

Continuum

What about long-range dynamics?

Nambu-Goto string

$$\frac{E^2}{\lambda^2} = \left(\frac{\sigma_{\vec{e}}}{N\lambda^2}\right)^2 (\lambda N l_{\vec{e}})^2 - \frac{\pi \sigma_{\vec{e}}}{3\lambda^2}$$
 From Luscher term

If
$$\sigma_{\vec{e}} = \sigma_0$$

and $l_{\vec{e}} = |\vec{e}|L$

The formula is compatible with reduction

Testing the *reduction* conjecture

Lattice simulations

Ongoing project

SU(5) $14^2 \times 48$ $22^2 \times 72$ SU(7) $10^2 \times 32$ SU(17) $4^2 \times 32$

Scanning several values of $~~\lambda NL~$ and magnetic flux m

Peturbative regime with Luscher term

SU(7) n=1 e=2

Peturbative regime without Luscher term

SU(7) n=1 e=2

NLλ

Peturbative regime with Luscher term

SU(5) n=1 e=3

Peturbative regime without Luscher term

SU(5) n=1 e=3

Peturbative regime with Luscher term

SU(5) n=1 e=1

Peturbative regime without Luscher term

SU(5) n=1 e=1

Combined formula

$$\frac{E^2}{\lambda^2} = \left(\frac{|\vec{e}| \sigma}{N\lambda^2}\right)^2 (\lambda N \ L)^2 - \frac{\pi\sigma}{3\lambda^2} - \frac{4\pi}{NL\lambda}G(\frac{\vec{e}}{N}) + \left(\frac{2\pi|\vec{m}|}{NL\lambda}\right)^2$$

Good qualitative description of the data with only one parameter Taken here to $\sqrt{\sigma} = 0.19638 \lambda$ (Teper et al.) Take $N \to \infty$ Scale $m \& \bar{k}$ like N to avoid tachyonic energy (see talk by A. González-Arroyo)

Summary

- We have analyzed the combined N and L dependence of electrix flux energies
- * For fixed colour momentum and $\frac{\vec{e}}{N}$ the relevant parameter turns out to be λNL
- Suggests reduction $N \leftrightarrow L$ which holds in PT and under certain assumptions in the confined regime
- ***** Luscher term essential also in the small λNL regime
- Ongoing simulations towards more quantitative tests (continuum extrapolation)