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The Abelian Higgs model 1s also called scalar
electrodynamics usually with a symmetry
breaking potential:

V(¢) = (|| — a*)°
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The Lagrangian:

* 1 14
L =D,¢*D"¢— A(|o]* — a*)* — ZFWFM

where

D,p = (0, —1ieA,)¢

has a spectrum of a massive vector boson, a
massive neutral scalar and massive vortices

M = ea m = V8\a
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Strong Coupling limat

e we take \ — 00 e — OO

B

e2

* keeping the ratio fixed

* this decouples the massive vector gauge
bosons and the massive neutral scalar,
leaving just the vortices with finite mass

Myortex — a2 X f(S)‘/€2)
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Effective Theory of Free Massive
Vortices

« Vortices have quantized flux

 Interactions fall off exponentially

* Thus as long as they are dilute, we can forget their
mutual interactions

e With the Chern-Simons term, they do have long
range interactions, but only due to Aharonov-
Bohm 1nteractions

e The vacuum to vacuum amplitude will be
saturated by configurations of closed vortex
loops, with Boltzmann weight proportional to the
mass per unit length times the total length.
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Generating closed loops on the

lattice
» we fill up space with a tetrahedral

tessellation ..,

« we start with a BCC lattice, and adding the
lines that split the cubic sides along the

e

° t

1agonals

nen we distribute the cube roots of unity on

t]

he vertices of the lattice

« 1f the phase change around a triangular face
is 27 then we say that a unit of flux has
pierced through that face
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 topologically, the flux has no choice but to
exit the tetrahedron that it has entered
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* but t
tetral

hen 1t enters 1into the neighbouring
hedron, and so on

 the flux has no choice but to fill the entire lattice,
or close on 1itself and form a vortex loop

 this way we generate a configuration of a box full
of closed vortex loops

* the loops cannot intersect

e such

a description was used 1n the context of

cosmic string configurations, but on a cubic
lattice, which allows two flux tubes to enter a cube
and two to leave, without resolving how they are
attached

* our lattice resolves the paths inside the cube
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Lattice thermal equilibrium

we start with an arbitrary initial configuration and
then update 1t with a Monte Carlo simulation to

yield a system in thermal equi!

the crudest approximation to t

1ibrium

e action 1S taken,

simply the mass per unit lengtl
length of the vortex loops

the number of configurations a priori are

so the aim of the Monte Carlo

1 times the total

6
32)(10

1s to extract a

manageable set of configurations with the same
statistical properties as the original set

we end up with a set of 10,000 configurations
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Approach to equilibrium for various masses:
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Numerical evidence for a phase
transition

~IO00000 0@ B 6 68 @ B O 660 6O

o
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* as a function of the density, we find a
transition at p =~ .152
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Infinite loops

if the length of a loop 1s much more than the
natural maximum length of a loop 1n a given box,
then we call 1t an infinite loop

a loop corresponds to a 3-d random walk with one
constraint (that 1t close)

the average distance traversed behaves as

d~ I

thus a loop considerably longer than 10000 should
be considered as infinite, as d = 100.

there 1s theoretical understanding why the system
should have exactly one infinite loop and a
thermal bath of finite loops, at high density.
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Order parameters
we look at the Wilson loop and Polyakov

loop W (L T) = <exp(—z'g ]{Aud%)> »

€

along a rectangular curve of dimensions L x T
as T — oo weexpect W (L,T)— e 27T

where the interpretation of A (L) 1s the
energy shift obtained by the insertion of a
quark/anti-quark pair into the vacuum, and
moving them along the Wilson loop

# Audz, s just the linking number of
the Wilson loop with the other vortex loops
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 thus we must compute
W (L,T) = (exp (2migv/e))

« where V  1sjust the linking number

e if A(L)~ L we have area law and linear
confinement

« we compute dA(L)/dL and look for a
constant part for 1" — oo

* so we compute 1t numerically at finite 7" and
extrapolate to 1" — o0
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* Wilson loop for different values of u
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« dA/dL for different values of T and

2 ot f

> ot

d(Energy Shift) /dL

0.0

A . T=80
A T=90
v T=98
;o X : :
. ko »

. \
. s \
S ‘
<p o.
LY . \
. . ‘
~

(N

H:

(N \ \
(N ] \
\ (N
(N

| \
~ X ~
~ . |
g —p— .
.
\ N
~ . |
\ .
l;

0.0

02 04 0.6 08 1.0 1

2

Monday, 25 June, 12




« dA/dL for different values of 7 and 4 = .2

*the dotted lines are

C(T)sin*((2mq/e)/2)
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e (C(T) as a functlon of ]/T
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* (C(T) as a function of 1/T
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 unfortunately, 1t seems that n C(T) = 0

* this means that there 1s no area law

* however, there 1s clearly a cross over to a
regime where the energy shift grows large
enough so that we cannot resolve its

behaviour: 1.0 — o Mu=0 -
' —o— Mu=0.13
0.8 - _
2 Mu=0.14
8‘ 0.6 | —v— Mu=0.147 _
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Polyakov loop

* this corresponds to a Wilson loop which
wraps around the temporal direction for
periodic boundary conditions. (This
corresponds to finite temperature.)

* this order parameter shows no special
behaviour, just like the Wilson loop
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Polyakov loop for different values of U
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Adding the Chern-Simons term

 the Chern-Simons term corresponds to the
addition y
L=L+ ZgquAuFupa

 there are fundamental differences including
this term 1n the Lagrangian

 the Euclidean Lagrangian is no longer real,
normally tSarink. — —SE  for

t — —iT Oy — 10-
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 the Chern-Simons term 1s linear in time

derivatives / dt0, — / ird.

e thus perturbation theory can be
compromised, especially 1f the Euclidean
critical points occur at complex field
configurations

« worse, the Monte-Carlo simulation simply
makes no sense, the complex integrand does
not admit an interpretation as a probability

density o—SE ,iSe £ p
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* but we can take only the real part of the
Euclidean action to define the measure for the

path integral _Sx

€ o

e and then 62. S.

* 1s just a uni-modular phase that can be
integrated against the measure defined by the

real part f D(¢, A),u(e_SE)eiSCO
<O = D6, Aule )

« which can be calculated using Monte Carlo
methods (this 1s ok for small imaginary part)
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Evaluating the Chern-Simons term

K
4

* the Chern-Simons term for a network of
vortex loops each carrying a unit of flux 1s
simply (two times) the total signed linking
number between all the vortex loops

/dgxe“”pAuFW = %d%’UJAM/CZQIJ_B

— T Z %daj“AM = (27’(’)2 Z Nioop

loops loops

L=Ly+ eMPALF,,
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* to calculate this linking number along a

dynamical vortex

loop 1s not straightforward

* the loop passes through the middle of the
triangular faces of the tetrahedra, there are no
phases defined there.

* but we can 1imagine making a deformation of
each loop to follow the edges and vertices

 then multiplication of the phases along the
deformed loop will give the linking number

with all the other |

0ops

 but i1t can also add

| the “self” linking number of

the original loop with the deformed loop
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Computing the self linking number

* the original loop and the deformed loop
define a closed ribbon which twists and
writhes

* the self linking number satisfies the relation
Self linking number = Twist + Writhe

* twist 1s simply the usual notion of the twist
along the ribbon (not an integer)

e writhe 1s a measure of how much the ribbon
colls up (not an integer)
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* the linking number between any two curves
1s actually just a double 1ntegral

N = — %daz%dyx f__,
z—y°

* but doing the integral along polygonal loops
of length more than a million is not feasible

 but knot theorists tell us that all we have to
do 1s project the loops on a two dimensional
plane and count all the crossings with
appropriate signs

XX XX
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Total linking number and Wilson loop

* the total linking number should behave
much like the linking number of a Wilson

loop

* we show the total linking number and the
Wilson loop linking number for various
values of the mass
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Total linking number distribution
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Wilson loop linking
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Total linking number and Wilson
loop linking number

Count

Count
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Total linking number and Wilson
loop linking number
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Chern-Simons term
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cos(y v]_)

Chern-Simons term
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Chern-Simons term
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Chern-Simons term
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Chern-Simons Term
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Wilson Loop with Chern Simons
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Wilson Loop with Chern-Simons
Term
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‘tHooft loop

* The ‘tHooft loop is defined as the
expectation value obtained by performing
the gauge field functional integral when a
singular flux tube 1s inserted along a
prescribed (usually) rectangular path

* 1n the absence of the Chern-Simons term
this has no evident effect

e the Chern-Simons term however adds the
linking number of the ‘tHooft loop with all
the other dynamical loops, just as 1t does for
the vortex loops
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* thus the action 1s appended by twice the linking number of
the ‘tHooft loop with all the other dynamical loops in each
configuration, multiplied by i times the coefficient of the
Chern-Simons term

« this 1s 1dentical to what happens when we evaluate the
Wilson loop, only that the charge of the inserted quarks 1s
not 2m g/e but i times the coefficient of the Chern-Simons
term

* hence 1n the theory without the Chern-Simons term, the
‘tHooft loop 1s just a constant equal to 1

* while in the theory with the Chern-Simons term, the ‘tHooft
loop must behave 1n the same way as the Wilson loop

* thus the anyonic theory has a perimeter law for both the
Wilson loop and the ‘tHooft loop even though there are no
massless particles
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‘tHooft Loop
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Summary/Conclusions

* we have simulated the strong coupling limat
of the 2+1 d Abelian Higgs model

* the effective description 1s one of non-
intersecting closed vortex loops

 there exists a transition from small, finite
vortex loops to one infinite loop 1n a
thermal bath of small loops

 the Wilson loop seems to exhibit cross over
behaviour, from perimeter law to some
other potential, but no confinement
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continued

* the Chern-Simons term mesures the total linking
number of the vortex configurations

» The distributions of total linking number is very
similar to the distribution of Wilson loop linking
number

* the question arises whether the average of the
Wilson loop at fixed total linking number could be
non-constant

e our results seem to show that in fact it 1s a constant

* we should search for another order parameter
which would be sensitive to the total linking
number
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* 1t would be interesting to actually simulate the
computation of the ‘t Hooft loop in the CS theory
to confirm explicitly the analytical result that 1t
must mimic the Wilson loop
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