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The Abelian Higgs model is also called scalar 
electrodynamics usually with a symmetry 
breaking potential:

V (φ) = λ(|φ|2 − a2)2
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The Lagrangian:
L = Dµφ∗Dµφ − λ(|φ|2 − a2)2 −

1

4
FµνFµν

Dµφ = (∂µ − ieAµ)φ
where

has a spectrum of a massive vector boson, a 
massive neutral scalar and massive vortices

M = ea m =
√

8λa
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Strong Coupling limit
• we take 

• keeping the ratio fixed

• this decouples the massive vector gauge 
bosons and the massive neutral scalar, 
leaving just the vortices with finite mass

λ → ∞ e → ∞

λ

e2

mvortex = a2
× f(8λ/e2)
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Effective Theory of Free Massive 
Vortices

• Vortices have quantized flux
• Interactions fall off exponentially
• Thus as long as they are dilute, we can forget their 

mutual interactions
• With the Chern-Simons term, they do have long 

range interactions, but only due to Aharonov-
Bohm interactions

• The vacuum to vacuum amplitude will be 
saturated by configurations of  closed vortex 
loops, with Boltzmann weight proportional to the 
mass per unit length times the total length.
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Generating closed loops on the 
lattice

• we fill up space with a tetrahedral 
tessellation (jmol)

• we start with a BCC lattice, and adding the 
lines that split the cubic sides along the 
diagonals

• then we distribute the cube roots of unity on 
the vertices of the lattice

• if the phase change around a triangular face 
is     , then we say that a unit of flux has 
pierced through that face

2π
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• topologically, the flux has no choice but to 
exit the tetrahedron that it has entered

1

?

2

3
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• but then it enters into the neighbouring 
tetrahedron, and so on

• the flux has no choice but to fill the entire lattice, 
or close on itself and form a vortex loop

• this way we generate a configuration of a box full 
of closed vortex loops

• the loops cannot intersect
• such a description was used in the context of 

cosmic string configurations, but on a cubic 
lattice, which allows two flux tubes to enter a cube 
and two to leave, without resolving how they are 
attached

• our lattice resolves the paths inside the cube
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Lattice thermal equilibrium
• we start with an arbitrary initial configuration and 

then update it with a Monte Carlo simulation to 
yield a system in thermal equilibrium

• the crudest approximation to the action is taken, 
simply the mass per unit length times the total 
length of the vortex loops

• the number of configurations a priori are
• so the aim of the Monte Carlo is to extract a 

manageable set of configurations with the same 
statistical properties as the original set 

• we end up with a set of 10,000 configurations

3
2×10

6
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Approach to equilibrium for various masses:      
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Numerical evidence for a phase 
transition
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• as a function of the density, we find a 
transition at 
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Infinite loops
• if the length of a loop is much more than the  

natural maximum length of a loop in a given box, 
then we call it an infinite loop

• a loop corresponds to a 3-d random walk with one 
constraint (that it close)

• the average distance traversed behaves as 

• thus a loop considerably longer than 10000 should 
be considered as infinite, as d = 100.

• there is theoretical understanding why the system 
should have exactly one infinite loop and  a 
thermal bath of finite loops, at high density.

d ∼

√

L
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Order parameters
• we look at the Wilson loop and Polyakov 

loop

• along a rectangular curve of  dimensions 
• as                we expect 
• where the interpretation of            is the 

energy shift obtained by the insertion of a 
quark/anti-quark pair into the vacuum, and 
moving them along the Wilson loop

•                         is just the linking number of 
the Wilson loop with the other vortex loops

W (L, T ) =

〈

exp(−i
q

e

∮

Aµdxµ)

〉

,

L × T

T → ∞ W (L, T ) −→ e−∆(L)·T

∆ (L)

∮
Aµdxµ
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• thus we must compute 

• where           is just the linking number
• if                     we have area law and linear 

confinement
• we compute                    and look for a 

constant part for 
• so we compute it numerically at finite T and 

extrapolate to 

W (L, T ) = 〈exp (2πiqν/e)〉

ν

∆(L) ∼ L

d∆(L)/dL

T → ∞

T → ∞
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• Wilson loop for different values of 
4
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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FIG. 6: Wilson loop W(L=20,T=80) as a function of 2πq/e.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

  

  

<
P

>
 

q 

 mu=0        mu=0.146      mu=0.16 

 mu=0.13   mu=0.152      mu=0.2 

                mu=0.4 

FIG. 7: Expectation value of Polyakov loop as a function of
q for T=30 from µ = 0 (down curve) to µ = 0.4 (top curve).

µ

Monday, 25 June, 12



  

•                  for different values of  T  and     = .152d∆/dL

4
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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•                  for different values of T  and     = .2
•the dotted lines are 

d∆/dL µ

C(T ) sin2((2πq/e)/2)
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• C(T) as a function of 1/T
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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• C(T) as a function of 1/T
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2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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• unfortunately, it seems that 

• this means that there is no area law
• however, there is clearly a cross over to a 

regime where the energy shift grows large 
enough so that we cannot resolve its 
behaviour:

lim

T → ∞

C(T ) = 0
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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Polyakov loop

• this corresponds to a Wilson loop which 
wraps around the temporal direction for 
periodic boundary conditions.  (This 
corresponds to finite temperature.)

• this order parameter shows no special 
behaviour, just like the Wilson loop
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Polyakov loop for different values of    
and for T=30
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FIG. 5: (a): Wilson loop W(L=20,T=80) as a function of
2πq/e from 0 to π for µ = 0.3, 0.2, 0.152.(b): d∆/dL as a
function of 2πq/e for T=80,90,98.The dots are our numerical
results for µ = 0.152 (left) and µ = 0.2 (right). The dotted
lines are the fit of the form C(T ).sin2((2πq/e)/2). (c): C(T)
as a function of 1/T.
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Adding the Chern-Simons term

• the Chern-Simons term corresponds to the 
addition

• there are fundamental differences including 
this term in the Lagrangian

• the Euclidean Lagrangian is no longer real, 
normally                                        for

Phase transitions in 2+1 dimensional Maxwell-Chern-Simons abelian Higgs model.
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We investigate, via Monte Carlo simulations, non-perturbative properties of a 2+1 dimensional
Abelian Higgs model without and with the Chern-Simons term in the symmetry broken phase in
terms of its topological excitations: vortices and anti-vortices. The aim of the present work is to
understand what phases exist for the system in that sector and the e�ect of the Chern-Simons term
on the confining potential induced between external charges found by Samuel. We formulate a
lattice description of the e�ective model starting from a tetrahedral tessellation of Euclidean three
space to generate non-intersecting closed vortex loops. In the presence of the Chern-Simons term,
for a given configuration, we formulate and compute the linking number between di�erent closed
vortex loops. We analyse properties of the vacuum and compute the expectation value of Wilson
loop operator and Polyakov loop operator, and in the presence of Chern-Simons term that of t’Hooft
loop operator.

1. INTRODUCTION

In this paper we study a strong coupling e⇥ective
Euclidean lattice description of the 2+1 dimensional
Abelian Higgs model without and with Chern-Simons
term (CS) in the symmetry broken sector.

The paper is organized as follows. In the next section,
we discuss the e⇥ective Abelian Higgs model in 2+1 di-
mensions in the limit of strong coupling. In section III,
we discuss the same model in the presence of CS term.
In section IV, we present a novel fashion to study the
e⇥ective models on a cubic lattice. Section V is devoted
to our numerical investigation of the e⇥ective models by
Monte-Carlo simulations. In section VI, we discuss our
results and dress our conclusions. The last section is de-
voted to our acknowledgements.

2. EFFECTIVE ABELIAN-HIGGS MODEL

The Abelian-Higgs model in 2+1 dimensions describes
a charged scalar field ⌃(x) interacting with a U(1) gauge
field Aµ(x). The lagrangian density is:

L1 = �1
4
Fµ⇥Fµ⇥ +

1
2
Dµ⌃(Dµ⌃)� � ⇤

4
(|⌃|2 � �2)2, (1)

where the covariant derivative is Dµ = �µ � ieAµ and
Fµ⇥ = �µA⇥ � �⇥Aµ (µ, ⇧ = 0, 1, 2); ⇤, e and � are taken
to be positive constants. This theory exhibits sponta-
neous symmetry breaking via the Higgs mechanism. The
resulting perturbatif spectrum is a massive vector bo-
son with mass M = e � and a neutral scalar boson
with mass m =

⌥
2⇤ �. In this sector, vortex soliton

solutions exist and carry quantized magnetic flux. Their
mass behaves like µ = �/e⇥f(8⇤/e2), [1] where f(8⇤/e2)
is a function that satisfies f(1) = 1. This point corre-
sponds to a saturated Bogomolnyi energy bound for the
vortices [2]. For 8⇤/e2 > 1 the vortices exhibit type
II behavior, have repulsive though short range interac-
tions and energetically form individual vortices of unit

flux rather than clumping together. For 8⇤/e2 < 1 they
exhibit type I behavior and energetically clump together
to form a single vortex of integer multiples of the unit
flux. We assume that our system is type II. We can
write µ = (�2/

⌥
2m)(2m/M)f((2m/M)2), and then tak-

ing the limit m, M ⇤ ⌅ it is possible to keep µ fixed.
This decouples the perturbative excitations leaving only
the vortices as the e⇥ective excitations. As shown in [3],
in this limit, the size of the vortices vanishes and their
world lines resemble perfect, fundamental strings. In the
lowest approximation, a closed vortex loop of length L
will have an action given by µ ⇥ L. Working at this ef-
fective level of approximation, the functional integral is
evaluated by integrating over field configurations corre-
sponding to closed vortex loops [4] .

3. EFFECTIVE ABELIAN-HIGGS MODEL
WITH CS TERM

When the CS term is included, the lagrangian density
L1 is modified to:

L = L1 +
⇥

4
⌥µ⇥⇤AµF⇥⇤, (2)

where the last term describes the CS term and ⇥ is the
coupling constant; we consider the case where ⇥ is small
such that the last term is considered as a perturbation
for the e⇥ective Abelian-Higgs model that we have just
described. The CS term automatically gives the photon
a mass proportional to ⇥, this is called topologically mas-
sive QED; and now the resulting perturbatif spectrum is
two massive vector bosons and one neutral scalar boson.
In this case, vortex soliton solutions still exist. Gauss
law implies that any vortex solution must have electric
charge Q and vice versa:

⇥
d2xJ0 = Q = ⇥�, (3)

where � =
�

d2xF12 is the flux and Jµ is the conserved
electro-magnetic current. Working in Euclidean 3-space,

iSMink. → −SE

t → −iτ ∂t → i∂τ
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• the Chern-Simons term is linear in time 
derivatives

• thus perturbation theory can be 
compromised, especially if the Euclidean 
critical points occur at complex field 
configurations

• worse, the Monte-Carlo simulation simply 
makes no sense, the complex integrand does 
not admit an interpretation as a probability 
density

∫
dt∂t →

∫
dτ∂τ

e
−SE e

iSc != p
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• but we can take only the real part of the 
Euclidean action to define the measure for the 
path integral

• and then 

• is just a uni-modular phase that can be 
integrated against the measure defined by the 
real part

• which can be calculated using Monte Carlo 
methods (this is ok for small imaginary part)

e
−SE

= p

e
iSc

< O >=

∫
D(φ, A)µ(e−SE )eiScO∫
D(φ, A)µ(e−SE )eiSc
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Evaluating the Chern-Simons term

• the Chern-Simons term for a network of 
vortex loops each carrying a unit of flux is 
simply (two times) the total signed linking 
number between all the vortex loops
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1. INTRODUCTION

In this paper we study a strong coupling e⇥ective
Euclidean lattice description of the 2+1 dimensional
Abelian Higgs model without and with Chern-Simons
term (CS) in the symmetry broken sector.

The paper is organized as follows. In the next section,
we discuss the e⇥ective Abelian Higgs model in 2+1 di-
mensions in the limit of strong coupling. In section III,
we discuss the same model in the presence of CS term.
In section IV, we present a novel fashion to study the
e⇥ective models on a cubic lattice. Section V is devoted
to our numerical investigation of the e⇥ective models by
Monte-Carlo simulations. In section VI, we discuss our
results and dress our conclusions. The last section is de-
voted to our acknowledgements.

2. EFFECTIVE ABELIAN-HIGGS MODEL

The Abelian-Higgs model in 2+1 dimensions describes
a charged scalar field ⌃(x) interacting with a U(1) gauge
field Aµ(x). The lagrangian density is:

L1 = �1
4
Fµ⇥Fµ⇥ +

1
2
Dµ⌃(Dµ⌃)� � ⇤

4
(|⌃|2 � �2)2, (1)

where the covariant derivative is Dµ = �µ � ieAµ and
Fµ⇥ = �µA⇥ � �⇥Aµ (µ, ⇧ = 0, 1, 2); ⇤, e and � are taken
to be positive constants. This theory exhibits sponta-
neous symmetry breaking via the Higgs mechanism. The
resulting perturbatif spectrum is a massive vector bo-
son with mass M = e � and a neutral scalar boson
with mass m =

⌥
2⇤ �. In this sector, vortex soliton

solutions exist and carry quantized magnetic flux. Their
mass behaves like µ = �/e⇥f(8⇤/e2), [1] where f(8⇤/e2)
is a function that satisfies f(1) = 1. This point corre-
sponds to a saturated Bogomolnyi energy bound for the
vortices [2]. For 8⇤/e2 > 1 the vortices exhibit type
II behavior, have repulsive though short range interac-
tions and energetically form individual vortices of unit

flux rather than clumping together. For 8⇤/e2 < 1 they
exhibit type I behavior and energetically clump together
to form a single vortex of integer multiples of the unit
flux. We assume that our system is type II. We can
write µ = (�2/

⌥
2m)(2m/M)f((2m/M)2), and then tak-

ing the limit m, M ⇤ ⌅ it is possible to keep µ fixed.
This decouples the perturbative excitations leaving only
the vortices as the e⇥ective excitations. As shown in [3],
in this limit, the size of the vortices vanishes and their
world lines resemble perfect, fundamental strings. In the
lowest approximation, a closed vortex loop of length L
will have an action given by µ ⇥ L. Working at this ef-
fective level of approximation, the functional integral is
evaluated by integrating over field configurations corre-
sponding to closed vortex loops [4] .

3. EFFECTIVE ABELIAN-HIGGS MODEL
WITH CS TERM

When the CS term is included, the lagrangian density
L1 is modified to:

L = L1 +
⇥

4
⌥µ⇥⇤AµF⇥⇤, (2)

where the last term describes the CS term and ⇥ is the
coupling constant; we consider the case where ⇥ is small
such that the last term is considered as a perturbation
for the e⇥ective Abelian-Higgs model that we have just
described. The CS term automatically gives the photon
a mass proportional to ⇥, this is called topologically mas-
sive QED; and now the resulting perturbatif spectrum is
two massive vector bosons and one neutral scalar boson.
In this case, vortex soliton solutions still exist. Gauss
law implies that any vortex solution must have electric
charge Q and vice versa:

⇥
d2xJ0 = Q = ⇥�, (3)

where � =
�

d2xF12 is the flux and Jµ is the conserved
electro-magnetic current. Working in Euclidean 3-space,

∫
d
3
xε

µνρ
AµFµν =

∮
dx

µ
Aµ

∫
d
2
x⊥B

= 2π
∑
loops

∮
dx

µ
Aµ = (2π)2

∑
loops

nloop
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• to calculate this linking number along a 
dynamical vortex loop is not straightforward

• the loop passes through the middle of the 
triangular faces of the tetrahedra, there are no 
phases defined there.  

• but we can imagine making a deformation of 
each loop to follow the edges and vertices

• then multiplication of the phases along the 
deformed loop will give the linking number 
with all the other loops

• but it can also add the “self” linking number of 
the original loop with the deformed loop

Monday, 25 June, 12



  

Computing the self linking number

• the original loop and the deformed loop 
define a closed ribbon which twists and 
writhes 

• the self linking number satisfies the relation 
Self linking number = Twist + Writhe

• twist is simply the usual notion of the twist 
along the ribbon (not an integer)

• writhe is a measure of how much the ribbon 
coils up (not an integer)
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• the linking number between any two curves 
is actually just a double integral

• but doing the integral along polygonal loops 
of length more than a million is not feasible

• but knot theorists tell us that all we have to 
do is project the loops on a two dimensional 
plane and count all the crossings with 
appropriate signs

N =
1

4π

∮
d"x

∮
·d"y ×

"x − "y

|"x − "y|3

+1 -1 +1-1
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Total linking number and Wilson loop
• the total linking number should behave 

much like the linking number of a Wilson 
loop

• we show the total linking number and the 
Wilson loop linking number for various 
values of the mass
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Total linking number distribution
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Total linking number
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Total linking number
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Wilson loop linking
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Total linking number and Wilson 
loop linking number
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Total linking number and Wilson 
loop linking number
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Chern-Simons term
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Chern-Simons term

Monday, 25 June, 12



  

Chern-Simons term
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Chern-Simons term
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Chern-Simons term
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Chern-Simons term
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Chern-Simons Term
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Wilson Loop with Chern Simons
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Wilson Loop with Chern-Simons 
Term
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‘tHooft loop
• The ‘tHooft loop is defined as the 

expectation value obtained by performing 
the gauge field functional integral when a 
singular flux tube is inserted along a 
prescribed (usually) rectangular path

• in the absence of the Chern-Simons term 
this has no evident effect 

• the Chern-Simons term however adds the 
linking number of the ‘tHooft loop with all 
the other dynamical loops, just as it does for 
the vortex loops
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• thus the action is appended by twice the linking number of 
the ‘tHooft loop with all the other dynamical loops in each 
configuration, multiplied by i times the coefficient of the 
Chern-Simons term

• this is identical to what happens when we evaluate the 
Wilson loop, only that the charge of the inserted quarks is 
not 2π q/e but i times the coefficient of the Chern-Simons 
term

• hence in the theory without the Chern-Simons term, the 
‘tHooft loop is just a constant equal to 1

• while in the theory with the Chern-Simons term, the ‘tHooft 
loop must behave in the same way as the Wilson loop

• thus the anyonic theory has a perimeter law for both the 
Wilson loop and the ‘tHooft loop even though there are no 
massless particles
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‘tHooft Loop

5

=

P
NT

N (NT )
⇣

1
N (NT )

P
Ci,NT

W (Ci,NT
)
⌘
eiNT

P
NT

N (NT )eiNT
.(9)

The term in parentheses in the numerator is the av-
erage value of the Wilson loop with fixed total linking
number. If this is independent of the value of the total
linking number, then it comes out of the sum, and in
fact the sums in the numerator and denominator cancel,
yielding

hW i = 1

N (NT )

X

Ci,NT

W (Ci,Nt) (10)

which is in fact independent of . This is exactly what
we find with our numerical simulation. In Fig. 4 we plot
the value of the Wilson loop for different values of µ as a
function of , at a fixed value 2⇡q/e = 0.18⇡. Evidently,
the average of the Wilson loop does not depend on  for
any value of µ for  . 0.08.

There is an apparent dependence in the graphs for
small µ, as  exceeds the value ⇠ 0.08. However, at
this point, as we can see from Fig. 3 the average value
of the Chern-Simons term, by which we divide, becomes
very small, and we no longer trust the numerical results.
Indeed, for small µ, the number of configurations at the
extremities of the distribution of the total linking num-
ber (i.e. at large total linking number, which only occurs
for small µ) becomes only a handful. Then the average
of the Wilson loop operator for these configurations de-
viates wildly with respect to the average when there are
many configurations (i.e. about 100) deviations which
are magnified when the denominator also becomes small.
We have verified that if we increase the number of con-
figurations that we have available at fixed total linking
number, then the average of the Wilson loop for this set
of configurations converges to the  independent value as
the number of configurations becomes large ⇠ 100.

FIG. 4. (color online) The Wilson loop for various values of
the coefficient of the Chern-Simons term: .

III.3. ’t Hooft loop

The ’t Hooft loop [8] corresponds to the insertion of
a singular magnetic flux tube along a contour of a fixed
rectangular loop of width L and length T . It is the dual
object to the Wilson loop [9]. It is important to note that
this is not a vortex loop, but just a gauge field loop. Thus
the functional integral over the gauge fields is subject to
the constraint that such a magnetic flux loop exists at the
given fixed position. The Monte Carlo method of gener-
ating the equilibrium configurations is unchanged, using
as before only the real part of the full action, with the
(infinite) action of the ’t Hooft loop subtracted off and
with our strong coupling approximation. Then the equi-
librium configurations are comprised of configurations of
closed vortex loops appended by the ’t Hooft loop. In the
presence of the Chern-Simons term, the ’t Hooft loop sim-
ply adds N0tHL to the action, where N0tHL is the linking
number of the ’t Hooft loop with all the dynamical vortex
loops. Hence the ’t Hooft loop is given by the average

h0tHi =
P

Ci
eiN0tHe�SE+iNT

P
Ci
e�SE+iNT

(11)

In Fig. 5 we plot the average value of the ’t Hooft loop
as a function of , for various values of the mass µ. The
points in the graphs beyond  = 0.08 should not be
trusted for small values of µ, since the errors are not
under control. The average value of the Chern-Simons
term in the denominator, as we apply Eqn. (6), becomes
vanishingly small. We note that in contrast with the
Wilson loop, the ’t Hooft loop has a clear dependence on
the coefficient of the Chern-Simons term. The ’t Hooft
loop is constant (equal to 1) in the absence of the Chern-
Simons term, but is a function of the coefficient of the
Chern-Simons term, in its presence.

FIG. 5. (color online) The average value of the ’t Hooft loop
in the presence of a Chern-Simons term as a function of .
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Summary/Conclusions
• we have simulated the strong coupling limit 

of the 2+1 d Abelian Higgs model
• the effective description is one of non-

intersecting closed vortex loops
• there exists a transition from small, finite 

vortex loops to one infinite loop in a 
thermal bath of small loops

• the Wilson loop seems to exhibit cross over 
behaviour, from perimeter law to some 
other potential, but no confinement
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continued
• the Chern-Simons term mesures the total linking 

number of the vortex configurations
• The distributions of total linking number is very 

similar to the distribution of Wilson loop linking 
number

• the question arises whether the average of the 
Wilson loop at fixed total linking number could be 
non-constant

• our results seem to show that in fact it is a constant
• we should search for another order parameter 

which would be sensitive to the total linking 
number
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• it would be interesting to actually simulate the 
computation of the ‘t Hooft loop  in the CS theory 
to confirm explicitly the analytical result that it 
must mimic the Wilson loop
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