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Large N gauge theory

Large N gauge theories are very interesting: Simpler, close to
phenom., connected to string picture, etc.
Interesting simplifying properties: planar PT, factorization,
stable resonances, etc.
LGT provides first-principles approach to gauge theories.
Combining both is numerically challenging (×N2 degrees of
freedom).
An early (80’s) look at the lattice loop eqs. at large N led to
an interesting observation

Reduction (Eguchi-Kawai)

Schwinger-Dyson equations for Wilson loops adopt a simple form
on the lattice
Expectation values of Wilson loops become volume independent in
the large N limit (Assuming Z 4

N symmetry is unbroken) ⇒
Eguchi-Kawai model: LGT in one point
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Continuum reduction?

However Reduction breaks down at weak coupling for EK model
because the classical vaccuum breaks the symmetry

Is breaking an unavoidable feature of finite volume
continuum theory? ⇔ No continuum reduction

If NOT it would be possible to modify lattice model.

Quenched EK model (Bhanot, Heller, Neuberger)

Twisted EK model (A.G-A, Okawa)

Double trace deformations (Shifman-Unsal-Yaffe)

Cut-off scale adjoint fermions (Kovtun-Unsal-Yaffe)

Alternatively, it could happen that reduction only applies beyond a
certain length scale l > lc (Narayanan-Neuberger).
Reduction could still work for other large N theories
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TEK Model

Use twisted boundary conditions (magnetic flux):

S = −bN
∑
µ,ν

z(N)
µν Tr(UµUνU

†
µU

†
ν)

With appropriate choice of z
(N)
µν symmetry subgroup unbroken at

weak coupling; N = L2 z
(N)
µν = exp{i2πkεµν/L}

Z 4
N −→ Z 2

N = Z 4
L ⇔ Reduction (N2 = L4)

What happens at intermediate couplings?

Teper and Vairinhos found breaking for k=1 N > 100
Explanation: Other minima dominate (First order transition)

Azeyanagi et al showed ⇒ No continuum reduction

AGA-Okawa 2010: No breaking if k/L −→ const 6= 0 .
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A. González-Arroyo and Masanori Okawa The string tension at large N from smeared Wilson loops



IFTlogo.pdf

Motivation and Goals This work conclusions

TEK Model

Use twisted boundary conditions (magnetic flux):

S = −bN
∑
µ,ν

z(N)
µν Tr(UµUνU

†
µU

†
ν)

With appropriate choice of z
(N)
µν symmetry subgroup unbroken at

weak coupling; N = L2 z
(N)
µν = exp{i2πkεµν/L}

Z 4
N −→ Z 2

N = Z 4
L ⇔ Reduction (N2 = L4)

What happens at intermediate couplings?

Teper and Vairinhos found breaking for k=1 N > 100
Explanation: Other minima dominate (First order transition)

Azeyanagi et al showed ⇒ No continuum reduction

AGA-Okawa 2010: No breaking if k/L −→ const 6= 0 .
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Checking our prescription

Complicated semiclassical analysis. Ongoing 2+1 dim.
analysis a first step (M. Garcia Perez talk)

Check of symmetry breaking up to N = 372

Check the physics (This study arXiV:1206.0049)
Extract String tension from SU(N) LGT ⇒ Take continuum
limit ⇒ Extrapolate to large N ⇒ Compare with TEK

N = 3 b ∈ [0.3278, 0.3611] (7 values) 260 confs. 324

N = 5 b ∈ [0.3513, 0.3772] (5 values) 260 confs. 324

N = 6 b ∈ [0.3541, 0.3792] (5 values) 260 confs. 324

N = 8 b ∈ [0.3569, 0.3815] (5 values) 260 confs. 324

N = 4 b ∈ [0.3464, 0.3725] (5 values) 260 confs. 324

N = 292 b ∈ [0.36, 0.385] (5+1 values) 5400 confs TEK
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Observables

Must use the same method for LGT and TEK
(single loops, symmetric lattice, . . . )

Use rectangular Wilson loops W (R,T ) for R≈T

To eliminate constant + perimeter dependence: Creutz ratios

χ(T ,R) = − log
W (T + 0.5,R + 0.5)W (T − 0.5,R − 0.5)

W (T + 0.5,R − 0.5)W (T − 0.5,R + 0.5)

One must use 4d APE Smearing for noise reduction
We eliminate the effect of smearing on χ(T ,R) by
extrapolating back. Click
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Results

For string tension we use square loops R = T ∈ [3.5, 8.5]

At each N and b the 6 values are well-fitted to a 3-param
formula

χ(R,R) = κ+
2γ

R2
+

η

R4

Good Fits Click

Continuum extrapolation

Data display scaling with 1% accuracy for top 5 b values and
intermediate size loops

To fix the scale we use 2 perturbative prescriptions with
improved coupling definitions (Edwards et al and Allton et al.)

Non-perturbative prescription (similar to Sommer scale)

−RTχ(R,T )|R=T=r0a(b) = 1.65
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Large N limit

Using Allton et al a(b) we made a linear fit in 1/N2 Click

ΛMS/
√
σ = 0.525(2) for TEK 0.523(5)

Agrees with N dependence by Allton (slope ≈ 0.3)

Value is off by 4-5% (compatible within systematic errors)
(See Lohmayer talk)

Most of the N-dependence is in r0ΛMS
Click
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Approach to large sizes

The parameter γ defining approach to large R is very interesting:
Our value γ = 0.272(5)

Slope is correlated with s.t. value

δσ ≈ − δγ

20a2

These parameters are connected with the string picture of the
chromoelectric flux-tube (Luscher-Symanzik-Weisz)

This can be generalized to rectangular loops. We have

χ(R,T ) = κ+ φ(z)(
1

R2
+

1

T 2
) + . . .

with z = R/T (aspect ratio).

Our values do not coincide with Nambu-Goto open string
parameters.
Aspect ratio dependence similar to l.o. perturbation theory PLOT

FORMULAS
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Conclusions

TEK model works up to 1-2% precision in the physical range
of params.

We obtained a very precise determination of the large N string
tension

N-dependence is small and lies mostly in the scale

String tension value is lower by 4-5% than Allton et al.
(Systematics should be analysed further)

Interesting results were obtained for the parameters describing
approach to large sizes. Our results differ from the predictions
of the Nambu-Goto string.

A more detailed account of our results including
volume-dependence and additional data (N = 4, 10 and TEK at
N = 372), is in progress.
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