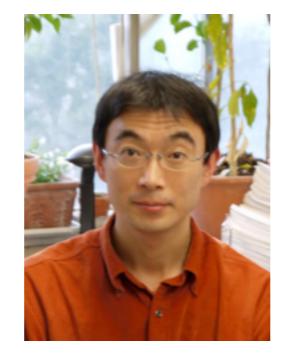
Chiral Symmetry Restoration and

Eigenvalue Density of Dirac Operator at Finite Temperature Sinya AOKI

University of Tsukuba

with H. Fukaya and Y. Taniguchi for JLQCD Collaboration



Lattice 2012, Cairns Convention Center, Cairns, Australia, 2012.06.25

1. Introduction

Chiral symmetry of QCD

phase transition

low T
$$U(1)_B \otimes S(N_f)_V$$
 high

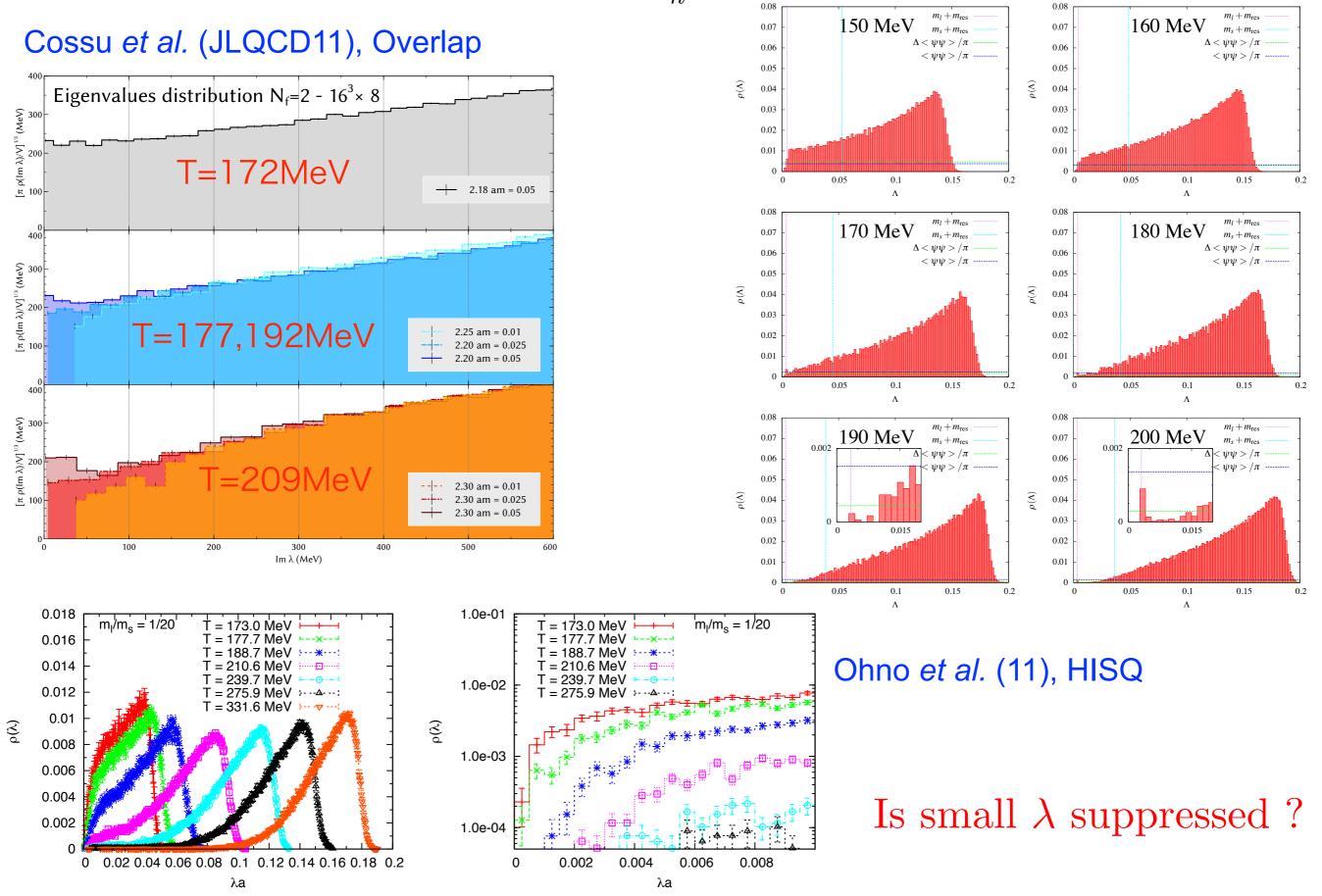
gh T $U(1)_B \otimes S(N_f)_L \otimes SU(N_f)_R$

restoration of chiral symmetry

Some questions

- 1. Eigenvalue distribution of Dirac operator
- 2. Recovery of U(1)_A symmetry at high T?

Lin (HotQCD11), DW



Previous studies on 2

Cohen(96), Theory Yes !

"Spectral" representation

$$\frac{1}{V} \int d^4x \langle \bar{\psi}(x)\psi(x) \rangle = -\frac{1}{V} \int D[G] \sum_j \left[\frac{1}{i\lambda_j - m} + \frac{1}{-i\lambda_j - m} \right] P_m(G) = \int D[G] P_m(G) \int d\lambda \rho_G(\lambda) \frac{2m}{\lambda^2 + m^2}$$
eigenvalue of $\gamma^{\mu} D_{\mu}$ density of state $\rho_G(\lambda) = \frac{1}{V} \sum_j \delta(\lambda - \lambda_j(G))$
Chiral symmetry restoration
$$\rho(\lambda) = \int D[G] P_m(G) \rho_G(\lambda)$$
 $\langle \bar{\psi}\psi \rangle = 2\pi\rho(0) = 0, \quad m \to 0$

$$P_m(\forall G) \ge 0$$

$$\rho_G(0) = 0 \text{ for } \forall G$$

$$\chi_{U(1)_A}/V = \int D[G]P_m[G] \left\{ \int d\lambda \rho_G(\lambda) \frac{2m}{\lambda^2 + m^2} \right\}^2 = O(m^2) \to 0, \quad (m \to 0)$$
$$\chi_{U(1)_A}/V = 0, \quad (m \to 0) \qquad \chi_{U(1)_A} = \int d^4x \, \langle \sigma(x)\sigma(0) - \delta(x)\delta(0) \rangle$$

 $U(1)_A$ seems to be restored.

Lee-Hatsuda(96), Theory No !

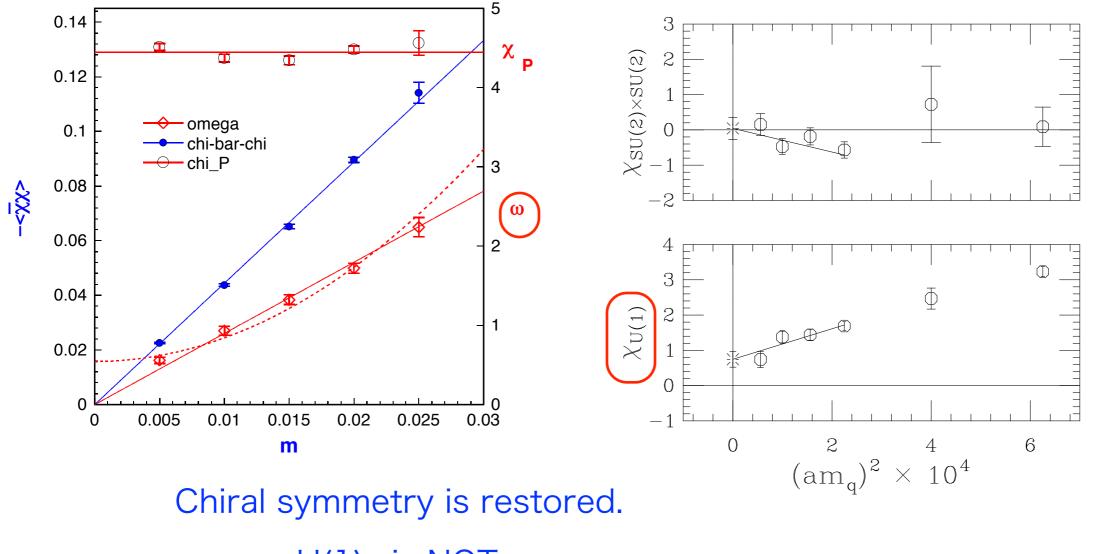
zero mode contributions are important.

$$\chi_{U(1)_A} = O(m^2) + \Delta$$

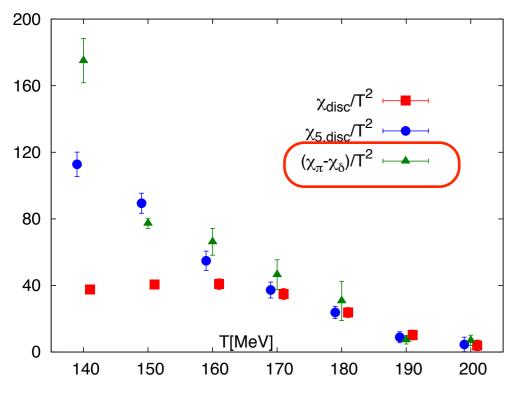
$$\Delta = O(1)$$
 at $N_f = 2$: contributions from $Q = \pm 1$

Lattice results

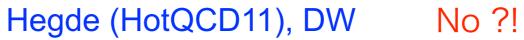
Chandrasekharan et al., (98), KS No!



U(1)_A is NOT.

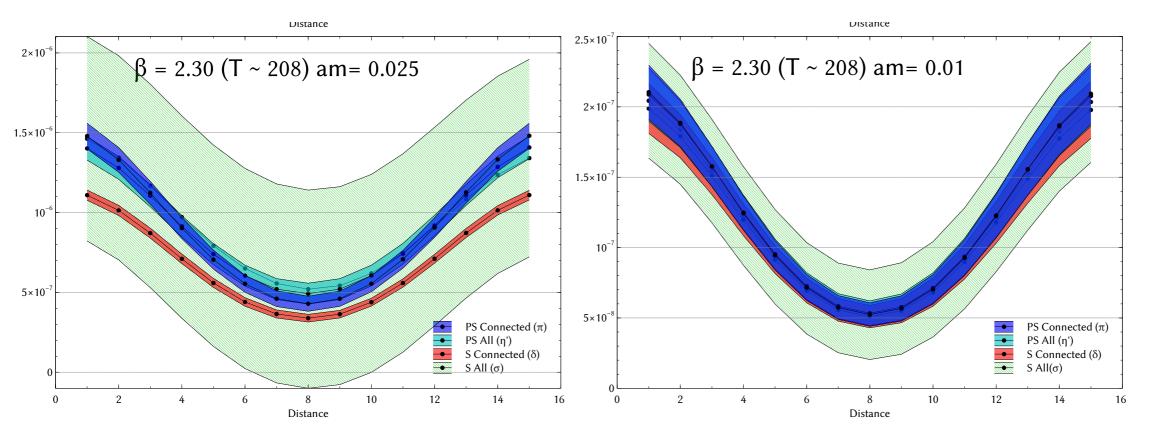


Cossu et al. (JLQCD11), Overlap Yes ?!



$$\chi_{U(1)_A} = 0 \text{ or not } ?$$

meson correlators



This talk

give constraints on eigenvalue densities of 2-flavor overlap fermions, if chiral symmetry in QCD is restored at finite temperature. discuss a behavior of singlet susceptibility using the constraints.

Content

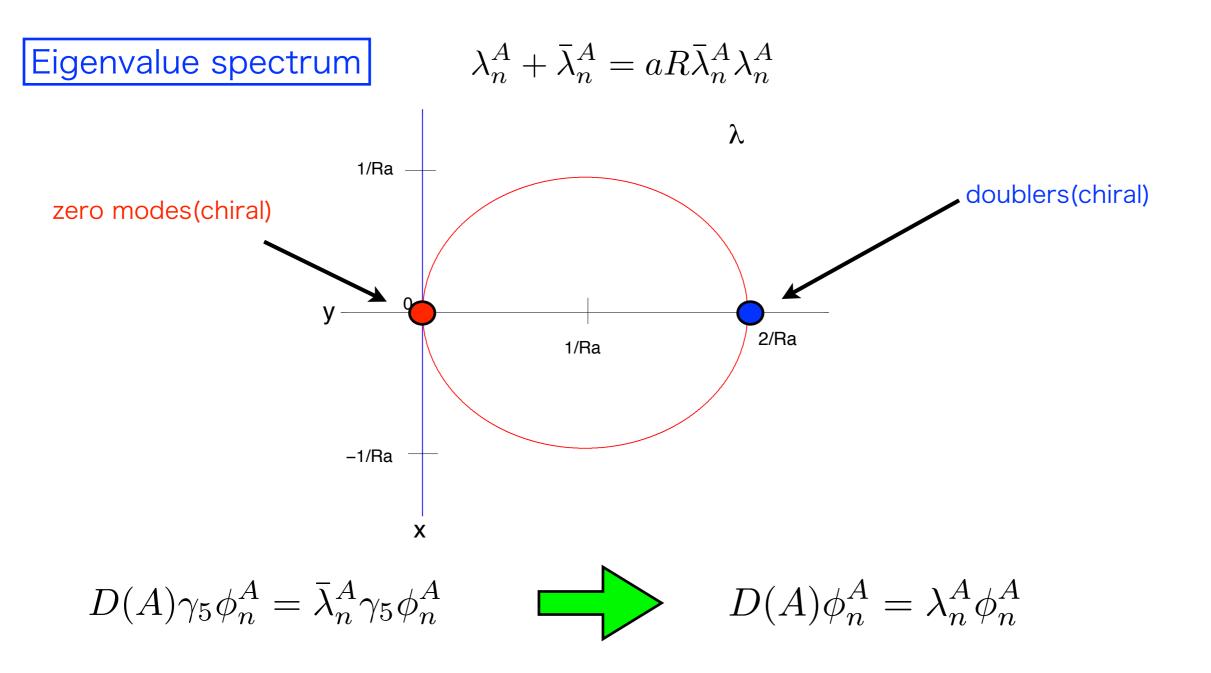
- 1. Introduction
- 2. Overlap fermions
- 3. Constraints on eigenvalue densities
- 4. Discussions: singlet susceptibility

2. Overlap fermions

Action
$$S = \overline{\psi}[D - mF(D)]\psi, \quad F(D) = 1 - \frac{Ra}{2}D$$

Ginsparg-Wilson relation

$$D\gamma_5 + \gamma_5 D = a D R \gamma_5 D$$



Propagator

$$S(x,y) = \sum_{n} \left[\frac{\phi_n(x)\phi_n^{\dagger}(y)}{f_m \lambda_n - m} + \frac{\gamma_5 \phi_n(x)\phi_n^{\dagger}(y)\gamma_5}{f_m \overline{\lambda}_n - m} \right] - \sum_{k=1}^{N_{R+L}} \frac{1}{m} \phi_k(x)\phi_k^{\dagger}(y) + \sum_{K=1}^{N_D} \frac{Ra}{2} \phi_K(x)\phi_K^{\dagger}(y)$$

bulk modes(non-chiral)

zero modes(chiral)

doublers(chiral)

 $f_m = 1 + \frac{Rma}{2}$

positive definite and even function of $m \neq 0$ for even N_f

N_f=2 in this talk.

Ward-Takahashi identities under "chiral" rotation

$$\theta^{a}(x)\delta^{a}_{x}\psi(x) = i\theta^{a}(x)T^{a}\gamma_{5}(1-RaD)$$

$$\theta^{a}(x)\delta^{a}_{x}\bar{\psi}(x) = i\bar{\psi}(x)\theta^{a}(x)T^{a}\gamma_{5},$$

Integrated operators

$$S^{a} = \int d^{4}x S^{a}(x), \quad P^{a} = \int d^{4}x P^{a}(x) \qquad \qquad S^{a}(x) = \bar{\psi}(x)T^{a}F(D)\psi(x), \qquad \qquad \text{scalar} \\ P^{a}(x) = \bar{\psi}(x)T^{a}i\gamma_{5}F(D)\psi(x), \qquad \qquad \qquad \text{pseudo-scalar} \end{cases}$$

rotation at N_f=2
$$\begin{aligned} \delta^b S^a &= 2\delta^{ab}P^a, \quad \delta^b P^a = -2\delta^{ab}S^a \\ \delta^0 S^a &= \delta^a S^0 = 2P^a, \quad \delta^0 P^a = \delta^a P^0 = -2S^a \end{aligned}$$

If the chiral symmetry is restored,

$$\lim_{m \to 0} \langle \delta^a \mathcal{O}_{n_1, n_2, n_3, n_4} \rangle_m = 0 \qquad \text{WT identities}$$

$$\mathcal{O}_{n_1,n_2,n_3,n_4} = (P^a)^{n_1} (S^a)^{n_2} (P^0)^{n_3} (S^0)^{n_4}$$
 $N = \sum_i n_i, \quad n_1 + n_2 = \text{odd}, \ n_1 + n_3 = \text{odd}$

explicit from

chiral

$$\frac{\delta^a}{2}\mathcal{O}_{n_1,n_2,n_3,n_4} = -n_1\mathcal{O}_{n_1-1,n_2,n_3,n_4+1} + n_2\mathcal{O}_{n_1,n_2-1,n_3+1,n_4} - n_3\mathcal{O}_{n_1,n_2+1,n_3-1,n_4} + n_4\mathcal{O}_{n_1+1,n_2,n_3,n_4-1}$$

3. Constraints on eigenvalue densities

Assumption

eigenvalues density can be expanded as

$$\rho^{A}(\lambda) \equiv \lim_{V \to \infty} \frac{1}{V} \sum_{n} \delta\left(\lambda - \sqrt{\bar{\lambda}_{n}^{A} \lambda_{n}^{A}}\right) = \sum_{k=0}^{\infty} \rho_{k}^{A} \frac{|\lambda|^{k}}{k!} = \rho_{0}^{A} + \rho_{1}^{A} |\lambda| + \cdots,$$

More precisely, configurations which can not be expandable are "measure zero" in the configuration space.

Method if
$$f(A)$$
: *m* independent, positive

$$\langle f(A) \rangle_m = O(m^k)$$
 $\langle f(A)^n \rangle_m = O(m^k)$ *n*: arbitrary integer

$$\langle f(A) \rangle_m = \frac{1}{Z} \int \mathcal{D}A \underbrace{P_m(A)}_{\text{positive}} f(A) \qquad m \text{ dependence only from } P_m(A) \qquad Z = O(1)$$

general N(odd)

 $m \rightarrow 0$

$$\frac{1}{V^N} \langle (S_0)^N \rangle_m = N_f^N \left\langle \left\{ \frac{N_{R+L}^A}{mV} + I_1 \right\}^N \right\rangle_m + O(V^{-1}) \to 0$$

$$\Lambda_R = \frac{2}{Ra}: \text{ cut-off}$$
$$I_1 = \frac{1}{Z_m} \int_0^{\Lambda_R} d\lambda \, \rho^A(\lambda) g_0(\lambda^2) \frac{2m_R}{\lambda^2 + m_R^2} = \pi \rho_0^A + O(m)$$

Both ρ_0^A and N_{R+L}^A are positive.

$$g_0(\lambda^2) = 1 - \frac{\lambda^2}{\Lambda_R^2}, \ m_R = m/Z_m$$

for small but non-zero m

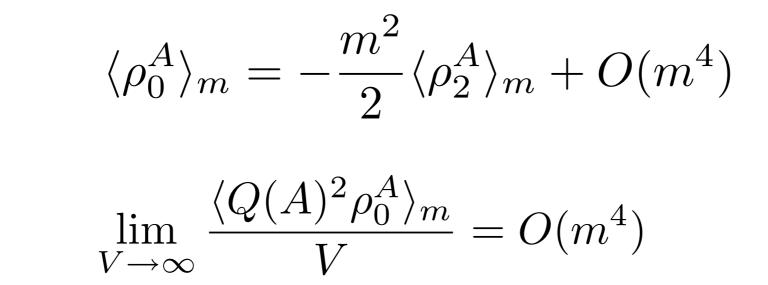
$$\frac{I_1}{m_R} + I_2 = \rho_0^A \left(\frac{\pi_m}{m} + \frac{2}{\Lambda_R}\right) + 2\rho_1^A + O(m),$$

$$\lim_{m \to 0} \chi^{\eta - \delta} = 0 \qquad \Longrightarrow \qquad \lim_{m \to 0} \frac{N_f^2 \langle Q(A)^2 \rangle_m}{m^2 V} = 2 \lim_{m \to 0} \langle \rho_1^A \rangle_m$$

WT identities

$$\langle \mathcal{O}_{2001} \rangle_m \to 0, \quad \langle -\mathcal{O}_{0201} + 2\mathcal{O}_{1110} \rangle_m \to 0, \quad \langle \mathcal{O}_{0021} + 2\mathcal{O}_{1110} \rangle_m = 0$$

$$\langle -\mathcal{O}_{0003} + 2\mathcal{O}_{2001} \rangle_m \to 0, \quad \langle \mathcal{O}_{0021} - \mathcal{O}_{0201} + \mathcal{O}_{1110} \rangle_m \to 0,$$



$$\begin{split} & \begin{pmatrix} \mathcal{O}_{1000} - \mathcal{O}_{0001} \rangle_m \to 0, & \langle \mathcal{O}_{1000} - 3\mathcal{O}_{2002} \rangle_m \to 0, \\ \langle \mathcal{O}_{0100} - \mathcal{O}_{0000} \rangle_m \to 0, & \langle \mathcal{O}_{0100} - 3\mathcal{O}_{0220} \rangle_m \to 0, \\ \langle \mathcal{O}_{2020} - \mathcal{O}_{0202} \rangle_m \to 0, \\ \langle \mathcal{O}_{2020} - \mathcal{O}_{0202} \rangle_m \to 0, \\ \langle \mathcal{O}_{111} - \mathcal{O}_{0202} + \mathcal{O}_{0022} \rangle_m \to 0, \\ \langle \mathcal{O}_{111} - \mathcal{O}_{0202} + \mathcal{O}_{0022} \rangle_m \to 0, \\ \sim \log m & \sim \frac{1}{m} & \sim \frac{1}{m^2} \\ & & \sim \log m & \sim \frac{1}{m} & \sim \frac{1}{m^2} \\ & & & \sim \log m \\ & & & \sim \log m & \sim \frac{1}{m^2} \\ & & & \sim \log m \\ & & & & \sim \log$$

+ result from N=4k (general)

Final results

$$\lim_{m \to 0} \langle \rho^A(\lambda) \rangle_m = \lim_{m \to 0} \langle \rho_3^A \rangle_m \frac{|\lambda|^3}{3!} + O(\lambda^4)$$

No constraints to higher $\langle \rho_n^A \rangle_m$

 $\langle \rho_3^A \rangle_m \neq 0$ even for "free" theory.

$$\langle \rho_0^A \rangle_m = 0$$
$$\lim_{V \to \infty} \frac{1}{V^k} \langle (N_{R+L}^A)^k \rangle_m = 0, \quad \lim_{V \to \infty} \frac{1}{V^k} \langle Q(A)^{2k} \rangle_m = 0$$

4. Discussion: Singlet susceptibility

Singlet susceptibility at high T

$$\lim_{m \to 0} \chi^{\pi - \eta} = \lim_{m \to 0} \lim_{V \to \infty} \frac{N_f^2}{m^2 V^2} \langle Q(A)^2 \rangle_m = 0$$

Both Cohen and Lee-Hatsuda are inaccurate.

This, however, does not mean U(1)_A symmetry is recovered at high T.

$$\lim_{m \to 0} \chi^{\pi - \eta} = 0$$

is necessary but NOT "sufficient" for the recovery of U(1)_A .

More general Singlet WT identities

$$\langle J^0 \mathcal{O} + \delta^0 \mathcal{O} \rangle_m = O(m)$$

anomaly(measure)

singlet rotation

We can show for $\mathcal{O} = \mathcal{O}_{n_1, n_2, n_3, n_4} = (P^a)^{n_1} (S^a)^{n_2} (P^0)^{n_3} (S^0)^{n_4}$

$$\lim_{V \to \infty} \frac{1}{V^k} \langle J^0 \mathcal{O} \rangle_m = \lim_{V \to \infty} \left\langle \frac{Q(A)^2}{mV} \times O(V^0) \right\rangle_m = 0$$

where k is the smallest integer which makes the $V \to \infty$ limit finite.

$$\lim_{m \to 0} \lim_{V \to \infty} \frac{1}{V^k} \langle \delta^0 \mathcal{O} \rangle_m = 0$$

Breaking of U(1)_A symmetry is absent for these "bulk quantities".