Dirac-mode expansion analysis for Polyakov loop

Takumi Iritani

Kyoto Univ.

June 27 (Wed.) 2012 Lattice 2012 Cairns Convention Centre, Cairns, Australia

Collaborators: S.Gongyo and H.Suganuma (Kyoto Univ.)

• Reference: S.Gongyo, TI, and H.Suganuma, arXiv:1202.4130.

Chiral Symmetry Breaking and Confinement

simultaneous chiral and deconfined phase transtion at finite temperature

Chiral Symmetry Breaking and Dirac Eigenmodes

• Dirac eigenmode \Rightarrow chiral symmetry breaking

Banks-Casher Relation — Banks, Casher ('80)

$$\langle \bar{q}q \rangle = -\lim_{m \to 0} \lim_{V \to \infty} \frac{\pi}{V} \langle \rho(0) \rangle$$

 $\rho(\lambda)$:Dirac spectrum

• What about the correspondence between Dirac eigenmode and confinement ?

Dirac Eigenmode and Confinement

Related Works

• Dirac spectrum sum and Polyakov loop

- Gattringer ('06), Bruckmann, Gattringer, Hagen ('07), Synatschke, Wipf, Langfeld ('08), ...

Polyakov loop \Rightarrow Dirac spectrum sum with various the boundary condition

- Dirac eigenmode and meson mass Lang, Schröck ('11)
 removing low-lying Dirac eigenmodes from quark propagator
 meson remains as bound state
- Dirac eigenmode and interquark potential Gongyo, TI, Suganuma ('11) expanding Wilson loop in terms of Dirac eigenmode

In this talk

Polyakov loop in terms of Dirac eigenmodes

Dirac Operator and Eigenmode

Dirac operator $D \equiv \gamma^{\mu} D_{\mu}$

• Dirac eigenstate |n
angle and Dirac eigenvalue λ_n

Dirac eigenfunction

$$\langle x|n\rangle = \psi_n(x)$$
$$\partial \psi_n(x) = \lambda_n \psi_n(x)$$

We calculate Dirac operator, eigenvalue λ_n and eigenfunction $\psi_n(x)$ numerically in lattice QCD.

Dirac Eigenmode Matrix Element

Link-variable operator \hat{U}_{μ}

$$\langle x|\hat{U}_{\mu}|y\rangle = U_{\mu}(x)\delta_{x+\hat{\mu},y}$$

matrix element of the link-variable operator $\langle m|\hat{U}_{\mu}|n
angle$

$$\langle m|\hat{U}_{\mu}|n\rangle = \sum_{x} \langle m|x\rangle \langle x|\hat{U}_{\mu}|x+\hat{\mu}\rangle \langle x+\hat{\mu}|n\rangle = \sum_{x} \psi_{m}^{\dagger}(x)U_{\mu}(x)\psi_{n}(x+\hat{\mu})$$

• $|n\rangle$: Dirac eigenstate, $\psi_n(x)$:Dirac eigenfunction

$$D|n\rangle = \lambda_n |n\rangle, \qquad D\psi_n = \lambda_n \psi_n$$

• matrix element : $\langle m | \hat{U}_{\mu} | n \rangle \Longrightarrow$ gauge invariant

$$\langle m | \hat{U}_{\mu} | n \rangle \rightarrow \sum \psi_{m}^{\dagger}(x) V^{\dagger}(x) V(x) U_{\mu}(x) V^{\dagger}(x+\hat{\mu}) V(x+\hat{\mu}) \psi_{n}(x+\hat{\mu})$$

$$= \sum \psi_{m}^{\dagger}(x) U_{\mu}(x) \psi_{n}(x+\hat{\mu})$$

$$= \langle m | \hat{U}_{\mu} | n \rangle$$

$$= \langle 15 \rangle$$

Dirac Eigenmode Projection Operator

projection operator

$$\hat{P} \equiv \sum_{n \in A} |n\rangle \langle n|$$

A is subset of full Dirac eigenmodes. ex. IR-mode cut $n > N_{\mathrm{IR}}$

Projected link-variable operator

$$\hat{U}^P_{\mu} \equiv \hat{P}\hat{U}_{\mu}\hat{P} = \sum_{n \in A} \sum_{m \in A} |m\rangle \langle m|\hat{U}_{\mu}|n\rangle \langle n|$$

Polyakov Loop Operator in Operator Formalism

Link-variable operator \hat{U}_{μ}

$$\langle x|\hat{U}_{\mu}|y\rangle = U_{\mu}(x)\delta_{x+\hat{\mu},y}$$

Polyakov loop operator in operator formalism

$$L_P \equiv \frac{1}{3V} \operatorname{Tr} \prod^{N_t} \hat{U}_4$$

V:spatial volume, N_t :temporal size

coincides with standard definition

$$L_{P} = \frac{1}{3V} \operatorname{Tr} \hat{U}_{4} \hat{U}_{4} \cdots \hat{U}_{4}$$

= $\frac{1}{3V} \operatorname{tr} \sum_{x} \langle \vec{x} | \hat{U}_{4} | \vec{x} + \hat{4} \rangle \langle \vec{x} + \hat{4} | \hat{U}_{4} | \vec{x} + 2 \cdot \hat{4} \rangle \cdots \langle \vec{x} + N_{t} \hat{4} | \hat{U}_{4} | \vec{x} \rangle$
= $\frac{1}{3V} \operatorname{tr} \sum_{x} U_{4}(\vec{x}, 1) U_{4}(\vec{x}, 2) \cdots U_{4}(\vec{x}, N_{t})$

Dirac-mode projected link-variable operator

$$\hat{U}_4^P \equiv \hat{P}\hat{U}_4\hat{P} = \sum_{n \in A} \sum_{m \in A} |m\rangle \langle m|\hat{U}_4|n\rangle \langle n|$$

 $|m\rangle$:Dirac-mode eigenstate

IR/UV Dirac-mode projected Polyakov loop

$$\langle L_P \rangle_{\text{IR/UV}} \equiv \frac{1}{3V} \langle \text{Tr} \prod^{N_t} \hat{U}_4^P \rangle$$

= $\frac{1}{3V} \text{tr} \sum_{n_1 \in A} \sum_{n_2 \in A} \cdots \sum_{n_{N_t} \in A} \langle n_1 | \hat{U}_4 | n_2 \rangle \langle n_2 | \hat{U}_4 | n_3 \rangle \cdots \langle n_{N_t} | \hat{U}_4 | n_1 \rangle$

Procedure of Polyakov Loop Analysis

1. Evaluate Dirac operator eigenfunction (KS-type fermion)

$$[D]_{x,y} = \frac{1}{2} \sum_{\mu=1}^{4} \eta_{\mu}(x) \left[U_{\mu}(x) \delta_{x+\mu,y} - U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\mu,y} \right]$$

 $\eta_1(x)\equiv 1,~\eta_\mu(x)=(-1)^{x_1+\cdots x_{\mu-1}}$ for $\mu\geq 2$

$$[D]_{x,y}\psi_n(y) = \lambda_n\psi_n(x)$$

2. Calculate Link-variable matrix element

$$\langle m|\hat{U}_{\mu}|n\rangle = \sum_{x}\psi_{m}^{\dagger}(x)U_{\mu}(x)\psi_{n}(x+\hat{\mu})$$

3.Calculate Polyakov Loop without IR/UV Dirac-mode

$$\langle \hat{L}_P \rangle_{\text{IR/UV}} \equiv \frac{1}{3V} \langle \text{Tr} \prod \hat{U}_4^P \rangle = \frac{1}{3V} \text{tr} \sum_{n_1, \cdots, n_{N_t} \in A} \langle n_1 | \hat{U}_4 | n_2 \rangle \cdots \langle n_{N_t} | \hat{U}_4 | n_1 \rangle$$

IR Dirac eigenmode cut

 6^4 lattice with $\beta = 5.6$, a = 0.25 fm at the quenched level

IR Dirac eigenmode cut

• chiral condensate $|\langle \bar{q}q \rangle| \Longrightarrow$ largely reduced

 6^4 lattice with $\beta = 5.6$, a = 0.25 fm at the quenched level

IR Dirac eigenmode cut

- chiral condensate $|\langle \bar{q}q \rangle| \Longrightarrow$ largely reduced
- Polyakov loop $L \simeq 0 \implies$ confining phase

 6^4 lattice with $\beta = 5.6$, a = 0.25 fm at the quenched level

IR Dirac eigenmode cut

- chiral condensate $|\langle \bar{q}q \rangle| \Longrightarrow$ largely reduced
- Polyakov loop $L \simeq 0 \implies$ confining phase
- interquark potential \Rightarrow confining potential

 6^4 lattice with $\beta=5.6,\,a=0.25{\rm fm}$ at the quenched level

Polyakov Loop in Confined/Deconfined Phase

IR Dirac-mode cut

Polyakov loop without IR Dirac-mode

 6^4 lattice at the quenched level

Polyakov Loop in Confined/Deconfined Phase

IR Dirac-mode cut

Polyakov loop without IR Dirac-mode \Rightarrow almost unchanged

 6^4 lattice at the quenched level

UV Dirac eigenmode cut

- chiral condensate $|\langle \bar{\psi}\psi \rangle| \Rightarrow$ unchanged
- Polyakov loop $L \simeq 0$

 6^4 lattice with $\beta=5.6,\,a=0.25{\rm fm}$ at the quenched level

UV Dirac eigenmode cut

- chiral condensate $|\langle \bar{\psi}\psi \rangle| \Rightarrow$ unchanged
- Polyakov loop $L \simeq 0 \implies$ confining phase

 6^4 lattice with eta=5.6, a=0.25fm at the quenched level

Dirac-mode Projected Polyakov Loop at Finite-T

IR Dirac-mode cut

UV Dirac-mode cut

High Dirac mode cut High Dirac mode cut λ_{max} λ_{max}

Summary

we study the Dirac-mode dependence of the Polyakov loop using Dirac-mode expansion method in lattice QCD

Dirac-mode dependence of Polyakov loop

• no specific Dirac-mode region for zero/non-zero Polyakov loop

- $\begin{array}{l} \langle L_P \rangle \simeq 0 \implies \langle L_P \rangle_{\mathrm{IR}} \simeq 0 \text{ and } \langle L_P \rangle_{\mathrm{UV}} \simeq 0 \\ \langle L_P \rangle \neq 0 \implies \langle L_P \rangle_{\mathrm{IR}} \neq 0 \text{ and } \langle L_P \rangle_{\mathrm{UV}} \neq 0 \end{array}$
- consistent with interquark potential analysis

confining potential persists without IR/UV Dirac eigenmode

Outlook

• Application of the Dirac-mode expansion analysis for other quantities.

Backup

Lattice QCD Simulation Parameters

- SU(3) lattice QCD at the quenched level
- $\bullet~$ lattice size : $6^3\times 6~{\rm and}~6^3\times 4$
- The total number of the KS-fermion Dirac eigenmode $6^3 \times 6 \implies 3888$ $6^3 \times 4 \implies 2592$

• $\beta = 5.4 \sim 6.0$

Chiral Condensate With Dirac-mode Projection

chiral condensate

$$\langle \bar{q}q \rangle = -\frac{1}{4} \frac{1}{V} \sum_{\lambda > 0} \frac{2m}{\lambda^2 + m^2}$$

$\beta\text{-dependence}$ of the Dirac Spectrum

Dirac spectra

Low-lying Dirac eigenmodes vanishes for $T > T_c$

Dirac-mode Matrix Element

Absolute value of Matrix element $|\langle n|\hat{U}_4|m
angle|$

- No characteristic behavior
- IR-mode enhancement ?

$$\left|\left\langle \left.n\right.\left|U_{\mu\,=\,4}\right|\left.m\right.\right\rangle\right|^{2}$$

Dirac Spectrum Sum and Polyakov Loop

Gattringer ('06)

$$\langle L_P \rangle = \frac{1}{8V} \left(2\sum_{\lambda} \lambda^{N_t} - (1+i)\sum_{\lambda_+} \lambda^{N_t}_+ - (1-i)\sum_{\lambda_-} \lambda^{N_t}_- \right)$$

 N_t :temporal size $V = L^3 \times N_t$:lattice volume

Dirac spectra with

- λ : periodic boundary condition
- λ_+ : boundary condition phase factor +i
- λ_- : boundary condition phase factor -i

Operator Formalism of Lattice QCD

Link-variable operator \hat{U}_{μ}

$$\langle x|\hat{U}_{\mu}|y\rangle = U_{\mu}(x)\delta_{x+\hat{\mu},y}$$

Wilson loop operator \hat{W}

$$\hat{W} \equiv \prod_{k=1}^{L} \hat{U}_{\mu_k}$$

$$Tr\hat{W} = tr \sum_{x} \langle x | \hat{W} | x \rangle$$

= tr $\sum_{x,x_2,\dots,x_L} \langle x | \hat{U}_{\mu_1} | x_2 \rangle \langle x_2 | \hat{U}_{\mu_2} | x_3 \rangle \cdots \langle x_L | \hat{U}_{\mu_L} | x \rangle$
= tr $\sum_{x} U_{\mu_1}(x) U_{\mu_2}(x + \mu_1) \cdots U_{\mu_L}(x + \sum_{x} \mu_k)$
= $\langle W \rangle \cdot tr \mathbf{1}$

Dirac Operator and Eigenmode

Dirac operator $D \equiv \gamma^{\mu} D_{\mu}$

• eigenstate $|n\rangle$ and eigenvalue λ_n

$$D\!\!\!\!/ |n\rangle = \lambda_n |n\rangle$$

• eigenfunction

$$\langle x|n\rangle = \psi_n(x)$$

 $\not\!\!D\psi_n(x) = \lambda_n\psi_n(x)$

Dirac Eigenmode Projected Wilson loop Wilson loop operator

$$\hat{W} \equiv \prod \hat{U}_{\mu_k} = \hat{U}_{\mu_1} \hat{U}_{\mu_2} \cdots \hat{U}_{\mu_L}$$

Dirac eigenmode projected Wilson loop operator \hat{W}^P

$$\hat{W}^{P} \equiv \prod \hat{U}_{\mu_{k}}^{P} = \hat{U}_{\mu_{1}}^{P} \hat{U}_{\mu_{2}}^{P} \cdots \hat{U}_{\mu_{L}}^{P}$$
$$= \sum_{n_{1}, n_{2}, \cdots, n_{L+1} \in A} |n_{1}\rangle \langle n_{1}|\hat{U}_{\mu_{1}}|n_{2}\rangle \langle n_{2}|\hat{U}_{\mu_{2}}|n_{3}\rangle \cdots \langle n_{L}|\hat{U}_{\mu_{L}}|n_{L+1}\rangle \langle n_{L+1}|$$

Trace of Dirac eigenmode projected Wilson loop

$$\operatorname{Tr}\hat{W}^{P} \equiv \operatorname{Tr} \prod \hat{U}^{P}_{\mu_{k}}$$
$$= \sum_{n_{1}, n_{2}, \cdots, n_{L} \in A} \operatorname{tr} \langle n_{1} | \hat{U}_{\mu_{1}} | n_{2} \rangle \langle n_{2} | \hat{U}_{\mu_{2}} | n_{3} \rangle \cdots \langle n_{L} | \hat{U}_{\mu_{L}} | n_{1} \rangle$$

Dirac Eigenmode Projected Inter-Quark Potential

Trace of Dirac eigenmode projected Wilson loop

$$\operatorname{Tr}\hat{W}^{P} \equiv \operatorname{Tr} \prod \hat{U}^{P}_{\mu_{k}}$$
$$= \sum_{n_{1}, n_{2}, \cdots, n_{L} \in A} \operatorname{tr} \langle n_{1} | \hat{U}_{\mu_{1}} | n_{2} \rangle \langle n_{2} | \hat{U}_{\mu_{2}} | n_{3} \rangle \cdots \langle n_{L} | \hat{U}_{\mu_{L}} | n_{1} \rangle$$

Dirac eigenmode projected interquark potential

$$V^{P}(R) = -\lim_{T \to \infty} \frac{1}{T} \ln \left\{ \operatorname{Tr} \hat{W}^{P}(R, T) \right\}$$

Procedure of Wilson Loop Analysis from Dirac-mode

1. Evaluate Dirac operator eigenfunction $\psi_n(x)$

$$[D]_{x,y} = \frac{1}{2} \sum_{\mu=1}^{4} \eta_{\mu}(x) \left[U_{\mu}(x)\delta_{x+\mu,y} - U_{\mu}^{\dagger}(x-\hat{\mu})\delta_{x-\mu,y} \right]$$

$$\eta_1(x) \equiv 1$$
, $\eta_\mu(x) = (-1)^{x_1 + \cdots + x_{\mu-1}}$ for $\mu \ge 2$

2. Calulate link-variable matrix element

$$\langle m|\hat{U}_{\mu}|n\rangle = \sum_{x}\psi_{m}^{\dagger}(x)U_{\mu}(x)\psi_{n}(x+\hat{\mu})$$

3.Calculate Wilson loop with IR/UV Dirac mode cut

$$\operatorname{Tr}\hat{W}^{P} = \sum_{n_{1}, n_{2}, \cdots, n_{L} \in A} \operatorname{tr} \langle n_{1} | \hat{U}_{\mu_{1}} | n_{2} \rangle \langle n_{2} | \hat{U}_{\mu_{2}} | n_{3} \rangle \cdots \langle n_{L} | \hat{U}_{\mu_{L}} | n_{1} \rangle$$

Lattice QCD Result

 6^4 with $\beta=5.6$ at quenched level lattice spacing $a\simeq 0.25 {\rm fm},~a^{-1}\simeq 0.8 {\rm GeV}$

Low-lying Dirac mode cut — chiral condensate \Rightarrow largely reduced But \Rightarrow confining potential confinement does not relate to χ SB via Dirac eigenmodes.