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Dirac-mode Expansion for Confinement and  

Chiral Symmetry Breaking 

Abstract: With the Dirac-mode expansion, we analyze the correspondence 

between confinement and chiral symmetry breaking in SU(3) lattice QCD. 

Notably, the confinement force is almost unchanged even after removing 

the low-lying Dirac modes, which are responsible to chiral symmetry 

breaking. This indicates that one-to-one correspondence does not hold for 

between confinement and chiral symmetry breaking in QCD. 
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The relation between    

Confinement and CSB is not yet known  

directly from QCD. 

Color Confinement and Chiral Symmetry Breaking (CSB) 

are Two of most important phenomena of   

Nonperturbative QCD 

Introduction : Confinement and Chiral Symmetry Breaking 



Correlation between Confinement and CSB is suggested by 

Simultaneous Phase Transition of  

Deconfinement and Chiral Restoration. 

F. Karsch, Lect. Notes Phys. (2002) 

Chiral Condensate＜qq＞ - Polyakov Loop＜P＞ 

Color Confinement Chiral Symmetry Breaking 

Lattice QCD results at finite temperature 



  Also, similar Coincidence between Deconfinement and Chiral Restoration 

  is found in Finite-Size lattice QCD. 

  In fact, Simultaneous Phase Transitions occur according to the Box Size.  

More on correlation between Confinement and Chiral Sym Breaking 

Deconfinement 

Chiral Restoration 

Confinement 

Chiral Sym.  

  Breaking 

Of course, Finite-Temperature Phase transition is also a kind 

of Finite-Size effect of Euclidean Lattice in temporal direction. 

Small Volume Lattice Large Volume Lattice 

simultaneous  

Phase Transitions  



  The close relation between Confinement and CSB has been indicated  

  in terms of Monopoles appearing in Maximally Abelian Gauge in QCD.  
 

  By removing the Monopoles from the QCD vacuum,  

  the confinement property and chiral symmetry breaking  

  are simultaneously lost.  
   

   [e.g. Dual GL theory: H.S. et al, NPB (1995),  

           LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995), ]  

O. Miyamura  

More on correlation between Confinement and Chiral Sym Breaking 



Important role of Monopole to Chiral Sym Breaking (Lattice QCD) 

O. Miyamura, PLB (1995) :  

First Lattice QCD Study to reveal Important role of Monopoles to CSB  

Quark Condensate plotted against b in SU(2) QCD on163x 4 lattice 

Monopole part (including only monopole) : Chiral sym breaking 

Photon part (after removing monopole) :    Chial Symmetric 

If  Monopoles are removed from 

the QCD vacuum, No CSB occurs 

Photon part 

 (after removing monopoles) 

In confinement phase, CSB occurs 



Relation between Confinement and Chiral Symmetry Breaking 

The lattice QCD studies indicate an important role of monopoles to  

both Confinement and CSB, and these two nonperturbative phenomena 

seem to be related through the monopole. 

Chiral Symmetry  

Breaking 
Confinement 

We would like to know the relation between 

Confinement and CSB in more direct manner. 

Monopoles  

in MA gauge 

Stack-Neiman-Wensley 

 PRD (1994),…. 
O.Miyamura, PLB (1995),  

R.Woloshyn, PRD(1995), … 

So, we investigate Confinement using the Dirac-mode expansion, 

because the essential modes for CSB are Low-lying Dirac modes. 
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)(  ：QCD Dirac operator eigenvalue density 

Zero-eigenvalue density ρ(0) of Dirac operator  

gives Chiral Condensate. 

⇒ The essential modes for Chiral Sym Breaking are  

     Low-lying Dirac modes. 

※ The non-zero spectrum is symmetric due to  0},{ 5 D
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Explicit form of eigen-value equation in lattice QCD  

Eigen-mode of Dirac operator in Lattice QCD 

same as quark field 

apart from an irrelevant  

phase factor 



To keep the gauge symmetry manifestly,  

we take the following  “operator formalism”. 

・Link-variable operator        is defined by the matrix element of 

・Wilson Loop operator       is defined as  

  the product of       along a rectangular loop:  
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・Wilson Loop operator:  
Lk

UUUUW
L

k


ˆˆˆˆˆ

21

1




Functional Trace of Wilson Loop operator is proportional to 

ordinary vacuum expectation value of the Wilson loop 
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・Functional Trace of Wilson Loop operator: 

tr :trace over SU(3) color index Tr : functional trace 



Dirac-mode matrix elements of Link-variable operator: 
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Huge matrix elements :calculable & Gauge Invariant 

Gauge invariance of the Dirac-mode matrix element 
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Dirac-mode expansion and projection 
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⇒ Projected Link-variable operator  

In this projection, the Dirac-mode sum is done within a subset A.  

e.g.   IR-cut 

Dirac-mode expansion  
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We define Projection operator which restricts the Dirac-mode space.  



・Wilson Loop operator:  
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・Dirac-mode projected Wilson Loop operator:  
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・Dirac-mode projected Wilson Loop:  
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Gauge Invariant ! 

Its Gauge Invariance is also checked in lattice QCD calculation. 

tr: color index 



Dirac-mode projected Wilson Loop 

13221
,...,,1

ˆˆˆtrˆTrˆTr
21

21

nUnnUnnUnUW
L

L

k L
Annn

P
L

k

P
 





Based on this relation, we investigate the role of specific Dirac modes to the 

area law of the Wilson loop. In fact, if some Dirac modes are essential to 

reproduce the area law or the confinement property, the removal of the 

coupling to these modes leads to a significant change on the area law. 

The original Wilson loop 

couples to all the Dirac modes 

and obeys the area law..  

The projected Wilson loop 

couples to restricted Dirac modes.  



Dirac-mode projected Inter-Quark Potential 

Dirac-mode projected Wilson Loop 
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⇒ corresponding Potential  
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As a caution, some  

non-locality appears.  



At present, we use a small-size lattice in this calculation. 

As a technical demerit of this formalism, we have to deal with 

Huge dimensional matrix and their products.   

nUm
1

ˆ
Actually, for the matrix                 ,  

the total matrix dimension is (Dirac-mode number)2. 

Here, the Dirac-mode number is (lattice-volume) x Nc x 4. 

This number can be reduced to be (lattice-volume) x Nc, 

using the Kogut-Susskind technique.  

Lattice Calculation Condition: 

SU(3) plaquette action on quenched periodic lattice 

b=5.6 (i.e., a=0.25fm) , 64  



Eigen-value distribution of QCD Dirac operator 

b=5.6 (a=0.25fm for lattice spacing),  64  lattice  

Low-lying Dirac modes are responsible to Chiral Symmetry Breaking 

(cf. Banks-Casher relation) 



Eigen-value distribution of QCD Dirac operator 

b=5.6 (a=0.25fm for lattice spacing),  64  lattice  

By Removing the Low-lying Dirac modes,  

Chiral Condensate is Largely Reduced.  

(cf. Banks-Casher relation) 



Chiral Condensate after removing low-lying Dirac modes  

Chiral Condensate is largely reduced (only 2%!) 

after removing the low-lying Dirac modes. 
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Wilson Loop after removing low-lying Dirac modes  

Lattice QCD result of  

Wilson Loop and Inter-Quark Potential  

after removing low-lying Dirac modes  

Wilson Loop obeys the Area law with the same slope 

even after removing the low-lying Dirac modes, 

which are responsible to chiral symmetry breaking.  

Wilson Loop  Potential  

Without 

low-lying Dirac modes  

Without low-lying  

Dirac modes  original 

original 



Dirac-mode projected Polyakov Loop and Z3 Center Symmetry 

Dirac-mode projected Polyakov Loop 
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Dirac spectral density 

Without IR-Dirac modes Polyakov Loop  

Even after removing the low-lying Dirac modes, Polyakov loop remains to be 

zero, which means confinement phase and unbroken Z3-center symmetry.  

on periodic lattice 



UV-cut case of Dirac modes 

Wilson Loop obeys the Area law with the same slope 

after removing the UV Dirac modes.  

Wilson Loop  Potential  Dirac spectral density  



 Intermediate-cut cases of Dirac modes 

Wilson Loop  Potential  Dirac spectral density  

Wilson Loop obeys the Area law with the same slope 

after removing various Dirac modes.  



C.B.Lang and M.Schrock,  

Phys. Rev. D84, 087704 (2011); PoS (LAT2011), 111 (2011);  

L.Ya Glozman, C.B.Lang and M.Schrock, arXiv:1205.4887 (2012). 

Related Lattice Studies 

F.Synatschke, A.Wipf, and K.Langfeld, Phys. Rev. D77, 114018 (2008).  

They studied Hadron Spectra after cutting off the low-lying Dirac modes. 
  

Our comment: The hadron formation seems to indicate the existence of            

                        Confinement Force. 

They found that confining force are reproduced with low-lying Dirac modes. 
 

Our comment: Their result seems to be consistent with our result on  

                        UV-cut case of Dirac modes. 



Summary and Concluding Remarks 

With the Dirac-mode expansion, we have analyzed  relation 

between confinement and CSB in SU(3) lattice QCD.  
  

Even after removing the low-lying Dirac modes,  

which are responsible to chiral symmetry breaking,  

Wilson loop obeys the Area law with the same slope parameter, 

and  Polyakov loop remains to be zero, which means  

the confinement phase and unbroken Z3-center symmetry.  
 

These indicate that one-to-one correspondence does not hold 

for between confinement and chiral symmetry breaking in QCD. 

 

Wilson loop  Polyakov loop  

Potential 





Instanton and Dirac zero-mode  


