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Abstract: With the Dirac-mode expansion, we analyze the correspondence
between confinement and chiral symmetry breaking in SU(3) lattice QCD.
Notably, the confinement force is almost unchanged even after removing
the low-lying Dirac modes, which are responsible to chiral symmetry
breaking. This indicates that one-to-one correspondence does not hold for
between confinement and chiral symmetry breaking in QCD.
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Introduction : Confinement and Chiral Symmetry Breaking

Color Confinement and Chiral Symmetry Breaking (CSB)
are Two of most important phenomena of
Nonperturbative QCD

The relation between
Confinement and CSB is not yet known
directly from QCD.




Correlation between Confinement and CSB is suggested by
Simultaneous Phase Transition of
Deconfinement and Chiral Restoration.

Lattice QCD results at finite temperature F. Karsch, Lect. Notes Phys. (2002)
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Fig. 2. Deconfinement and chiral symmetry restoration m 2-favour QCD: Shown
1= (L) (left), which 15 the order parameter for deconfinement m the pure gauge
limit (mg — o), and (1010) (right), which is the order parameter for chiral sym-
metry breaking m the chiral it (mg; — 0). Also shown are the corresponding
susceptibilities as a function of the coupling 3 = 6/g°.



More on correlation between Confinement and Chiral Sym Breaking

Also, similar Coincidence between Deconfinement and Chiral Restoration

Is found in Finite-Size lattice QCD.

In fact, Simultaneous Phase Transitions occur according to the Box Size.
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Of course, Finite-Temperature Phase transition is also a kind
of Finite-Size effect of Euclidean Lattice in temporal direction.



More on correlation between Confinement and Chiral Sym Breaking

The close relation between Confinement and CSB has been indicated
in terms of Monopoles appearing in Maximally Abelian Gauge in QCD.

By removing the Monopoles from the QCD vacuum,
the confinement property and chiral symmetry breaking
are simultaneously lost.

[e.g. Dual GL theory: H.S. et al, NPB (1995),
LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995), |

O. Miyamura




Important role of Monopole to Chiral Sym Breaking (Lattice QCD)

O. Miyamura, PLB (1995) :
First Lattice QCD Study to reveal Important role of Monopoles to CSB

Quark Condensate plotted against § in SU(2) QCD on163x 4 lattice
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Fig. 4. (a) |{TIG(D.C')}| for ma = 0.005 in the SU(2) field

(cross), in the U(1) field (open circle), its singular (filled circle)

and regular (triangle) components on a 16% x 4 lattice. (b) Same

for ma = 0.01.

Monopole part (including only monopole) : Chiral sym breaking
Photon part (after removing monopole) : Chial Symmetric



Relation between Confinement and Chiral Symmetry Breaking

The lattice QCD studies indicate an important role of monopoles to
both Confinement and CSB, and these two nonperturbative phenomena
seem to be related through the monopole.

Monopoles

iIn MA gauge

Stack-Neiman-Wensley O.Miyamura, PLB (1995),
PRD (1994),.... \f % R.Woloshyn, PRD(1995), ...

Chiral Symmetry
Breaking
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We would like to know the relation between
Confinement and CSB in more direct manner.

So, we investigate Confinement using the Dirac-mode expansion,
because the essential modes for CSB are Low-lying Dirac modes.




Banks-Casher Relation

2

(ga)| = lim lim 7z p(0)

m—0V -0

o(A) =\%<Z5(/1—ﬂk)> : QCD Dirac operator eigenvalue density
k

Zero-eigenvalue density p(0) of Dirac operator

gives Chiral Condensate.

= The essential modes for Chiral Sym Breaking are
Low-lying Dirac modes.

> The non-zero spectrum is symmetric due to {7/5, D} =0
Dl//n = ﬂ’an — D(7/5Wn) = _;]“n (7/51//n)



Eigen-mode of Dirac operator in Lattice QCD

1 4
D = Z_aZ:;‘yﬂ[U“(X)gy’w ~-U_,(X)d,,_;]| :Lattice Dirac operator

ID'at[U]‘ n) = A,|N)| :Dirac eigen-value, Dirac eigen-state

ZDLaylt[U]Wn (Y) = 4, (X)| :Dirac eigen-function w,(x)

y

Explicit form of eigen-value equation in lattice QCD

Z_Ziyﬂwﬂ(x)%m 2)=U_,, (s (= 2] = 4w, ()

Gauge trans. property: U,(x) >V(X)U, (V™ (x+4)

v, (X) >V (X)w,(X) same as quark field

+ L apart from an irrelevant
(m[n) = jd X (N, (X) = 8, :normalization pEase factor




To keep the gauge symmetry manifestly,
we take the following “operator formalism”.

- Link-variable operator Lj Is defined by the matrix element of

(X|U,]y) =U, (%),

-Wilson Loop operator W is defined as
the product of Uﬂalong a rectangular loop:

>

,Uz Hi

rectangular loop



Functional Trace of Wilson Loop operator is proportional to
ordinary vacuum expectation value of the Wilson loop

L
-Wilson Loop operator: W EHUuk =UMUM2 ---UﬂL

- Functional Trace of Wilson Loop operator'

TrV\A/:trZ<XMA/‘ _trZ ‘Uﬂl My L‘ >
=1r Z<X1‘Uﬂ1‘x2><x2‘Uuz‘x3><x3‘uﬂ3‘x4>”'< L‘UuL‘Xﬁ

Xq 1 X yeee XL

A A 2 L1 A
:trz<x\uﬂl\x+,ul><x+,ul\uﬂ2 |x+kZ:1yk>-~-<x+glyk |UﬂL\x>

2 L1
=tr) U, (U, (x+m)U,, (x+kZ:1yk)-- U, (x+ kzzfuk)

=(W)-Trl

TTr - functional trace tr :trace over SU(3) color index




Dirac-mode matrix elements of Link-variable operator:

)= (M) (XU [ x+ a)(x+ | n) )= 2. (O, (w (x-+ 1)

X

Huge matrix elements :calculable & Gauge Invariant

N

(mU

Y7,

Gauge transformation:

{uﬂ(x)+V<x>Uﬂ<x>V*<X+ﬂ> w2 DUy (9) = A, (%)

v (X) >V (X, (X) (same as quark field)

N

U

n)

Gauge invariance of the Dirac-mode matrix element (m

)= 3w (O, (9w, (x+ 2)

Y7,

= 2 ¥ OV () V(U 0V (x+ £2) -V (X + )y, (X + £2)

=D ¥ O, (X, (x+2) =(mJ | n)

apart from an irrelevant phase factor




Dirac-mode expansion and projection

Z\ =1 :completeness of the Dirac-mode basis

zz m)(mU

We define Projection operator which restricts the Dirac-mode space.

n}n| Dirac-mode expansion

Projection operator |P = Z\ ny(n| P2_p p+r_p
neA

In this projection, the Dirac-mode sum is done within a subset A.

e.g. IR-cut Z — Z

neA |n|>N|R

= Projected Link-variable operator

P=22 [mm

meAneA




N

-Wilson Loop operator: W = I_IUﬂk =U Uﬂ2 U,
- Dirac-mode projected Wilson Loop operator:
WP =[JU? =UPUP U7 =PU, PU, P--BU, P
k=1
DI AL CAT LSS VAL IS
- Dirac-mode projected Wilson Loop:
TI® Equu;k _TrUPUP -.UF =TrPU,PU, B.--PU, P
1

— Ztl’ <n1|0ﬂ1|n2><n2 |Uﬂz|n3>°'°<nL |LjuL|

nl,nz,...nLEA

n)

Gauge Invariant !

tr: color index

Its Gauge Invariance is also checked in lattice QCD calculation.




Dirac-mode projected Wilson Loop

A L 3 T j )
TrwF ETTI;IUZ( — Z” <n1‘Uu1‘n2><n2 ‘Uﬂz‘n3>”'<nL ‘Um‘n1>

n,Ny,...N €A

—

The original Wllson_loop The projected Wilson loop
couples to all the Dirac modes couples to restricted Dirac modes.
and obeys the area law..

Based on this relation, we investigate the role of specific Dirac modes to the
area law of the Wilson loop. In fact, if some Dirac modes are essential to
reproduce the area law or the confinement property, the removal of the
coupling to these modes leads to a significant change on the area law.




Dirac-mode projected Inter-Quark Potential

Dirac-mode projected Wilson Loop

A L A A A A
A" =Tr U7 = 3 ()0, m)m, 0, In)-+(n U, [y

nl,nz,...nLEA

= corresponding Potential

VP(R) = —T|I£)noo% In {TFWP(R,T)} As a caution, some

non-locality appears.

Unprojected case: ordinary inter-quark potential is obtained

cf Trace of Wilson Loop operator is proportional to
ordinary vacuum expectation value of the Wilson loop

‘Trv(/ = (W) -Trl‘

V(R) = ‘T"L‘l% In {T rVV(R,T)}z —Tlanoo% In(W(R, T)) +irrelevantonst.




As a technical demerit of this formalism, we have to deal with
Huge dimensional matrix and their products.

Actually, for the matrix (MU ,|n) |
the total matrix dimension is (Dirac-mode number)?.
Here, the Dirac-mode number is (lattice-volume) x N X 4.

This number can be reduced to be (lattice-volume) x N,
using the Kogut-Susskind technique.

At present, we use a small-size lattice In this calculation.

Lattice Calculation Condition:

SU(3) plaguette action on quenched periodic lattice
B=5.6 (i.e., a=0.25fm) , 64



Eigen-value distribution of QCD Dirac operator

B=5.6 (a=0.25fm for lattice spacing), 6* lattice

1 q":"] 1 1 1 1

1200} o~ - .
— 1000} [ a i
EI —
= 800} — - .
ﬁ B
S soof NN .

400} .

0
0 0.5 1 15 2 2.5

Low-lying Dirac modes are responsible to Chiral Symmetry Breaking |

(cf. Banks-Casher relation)



Eigen-value distribution of QCD Dirac operator

B=5.6 (a=0.25fm for lattice spacing), 6* lattice
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By Removing the Low-lying Dirac modes,
Chiral Condensate is Largely Reduced.

(cf. Banks-Casher relation)



Chiral Condensate after removing low-lying Dirac modes
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FIG. 2: The lattice QCD result of the quark condensate
(Gq)a;r as the function of the current quark mass m in

— the presence of IR cut Ajr = 0.5,1.0,1.5[a™']. The ver-
<qq> IR tical axis is normalized by the original value of (Gq) with-
—_— X 002 for m.~5 MeV out cut. A large reduction is found as (gg)a;g/{qq) =~ 0.02

> q for Ajr = 0.5a7! ~ 0.4GeV around the physical region of
m >~ 0.006a~" ~ 5MeV.

Chiral Condensate is largely reduced (only 2%!)
after removing the low-lying Dirac modes.
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Wilson Loop after removing low-lying Dirac modes

Lattice QCD result of

Wilson Loop and Inter-Quark Potential
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Wilson Loop obeys the Area law with the same slope
even after removing the low-lying Dirac modes,
which are responsible to chiral symmetry breaking.




Dirac-mode projected Polyakov Loop and Z; Center Symmetry

Dirac-mode projected Polyakov Loop

TrPP=TrU5) = > tr (n|U,|n,)(n, [T, ng)--(ny |U, | )

MN,Ny,... N €A
Polyakov Loop Without IR-Dirac modes on periodic lattice
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FIG. 6: The scatter plot of the Polyakov loop. The left figure
shows the original Polyakov loop (Lp). The right figure shows
the Polyakov loop (Lp)r after cutting off the low-lying Dirac
modes below the IR-cutoff Ajg = 0.5a".

Even after removing the low-lying Dirac modes, Polyakov loop remains to be
zero, which means confinement phase and unbroken Z;-center symmetry.




UV-cut case of Dirac modes

Dirac spectral density Wilson Loop Potential
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FIG. T: (a) The UV-cut Dirac spectral density puv(A) = p(A)8({Avv — |A|) with the UV-cutoff Auv = 2a™' =~ 1.6GeV. (b) The
UV-cut Wilson loop TrW ¥ (R, T) (circle) after removing the UV Dirac modes, plotted against R x T. The slope parameter o
is almost the same as that of the original Wilson loop (square). (¢) The corresponding UV-cut inter-quark potential (cirele),
which is almost unchanged from the original one (square), apart from an irrelevant constant.

Wilson Loop obeys the Area law with the same slope
after removing the UV Dirac modes.




Intermediate-cut cases of Dirac modes

Dirac spectral density ~ Wilson Loop Potential
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FIG. 8: The left figures show the intermediate(IM)-cut Dirac spectral density pr(A): the IM Dirac modes of 0.5 — 0.8[a"']
{top), 0.8=1.0[a"'] (middle), and 1.0—1.2[a"'] (bottom) are cut. The central figures show the IM-cut Wilson loop TeW ¥ (R, T')
{circle) after removing the IM Dirac modes, plotted against & % T. For each case, the slope parameter ¥ is almost the same
as that of the original Wilson loop (square). The right figure shows the corresponding IM-cut inter-quark potential {circle],
which is almost unchanged from the original one {square), apart from an irrelevant constant.

Wilson Loop obeys the Area law with the same slope
after removing various Dirac modes.




Related Lattice Studies

F.Synatschke, A.Wipf, and K.Langfeld, Phys. Rev. D77, 114018 (2008).

They found that confining force are reproduced with low-lying Dirac modes.

Our comment: Their result seems to be consistent with our result on
UV-cut case of Dirac modes.

C.B.Lang and M.Schrock,
Phys. Rev. D84, 087704 (2011); PoS (LAT2011), 111 (2011);
L.Ya Glozman, C.B.Lang and M.Schrock, arXiv:1205.4887 (2012).

They studied Hadron Spectra after cutting off the low-lying Dirac modes.

Our comment: The hadron formation seems to indicate the existence of
Confinement Force.



Summary and Concluding Remarks

With the Dirac-mode expansion, we have analyzed relation
between confinement and CSB in SU(3) lattice QCD.

Even after removing the low-lying Dirac modes,

which are responsible to chiral symmetry breaking,

Wilson loop obeys the Area law with the same slope parameter,
and Polyakov loop remains to be zero, which means

the confinement phase and unbroken Z,-center symmetry.

These indicate that one-to-one correspondence does not hold
for between confinement and chiral symmetry breaking in QCD.
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Instanton and Dirac zero-mode
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Figure 8: Around each instanton, the Dirac zero-mode is localized, and such low-lying Dirac modes con-
tribute to chiral symmetry breaking. However, the localized objects are hard to contribute to confinement.

Recall that instantons contribute to chiral symmetry breaking, but do not directly lead to con-
finement [8]. Then. as a thought experiment, if only instantons can be carefully removed from
the QCD vacuum, confinement properties would be almost unchanged, but the chiral condensate
is largely reduced. and accordingly some low-lying Dirac modes disappear. Thus, in this case,
confinement 1s almost unchanged, 1n spite of the large reduction of low-lying Dirac modes.



