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f i t t e r

Since the nineties...

✤ [Hat-tip B-factories]

✤Are the 4 CKM parameters 
enough to fit global data?

✤High precision now

✤ Lattice QCD role

✤No cracks have penetrated 
the foundation (yet)



Since the noughties...

✤ [Hat-tip Tevatron]

✤Bd and Bs mixing

✤New physics in ΔF=2 
Heff?

✤ SM seems OK, except 
for DØ like-sign 
dimuon CP asymmetry
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Now in the tweenies...

✤ [Hat-tip LHC]

✤ b ➙ s semileptonic decays

✤Data for B ➙ K(*) µ+µ- and  
Bs  ➙ φ µ+µ- 

✤ (see S. Meinel Thurs 2:50 for 
Λb  ➙ Λ µ+µ -)

✤Test b ➙ s Heff
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b ➙ s is rare in the SM
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Dominant operators
SM operatorsDecays

B → K∗γ

B → K(∗)!+!−

Bs → φ"+"−

Bs → φγ

Λb → Λγ

Λb → Λ !+!−

B → (ρ/ω)γ

Q7γ =
e

8π2
mb s̄iσ

µν(1 + γ5)biFµν

Q2 = (s̄ c)V −A (c̄ b)V −A

Q10A =
e2

8π2
(s̄b)V −A("̄")A

Q9V =
e2

8π2
(s̄b)V −A("̄")V

b s

γ, Z

c c

Charmonium resonances

Khodjamirian, et al, PLB 402 (1997)
Khodjamirian, et al, arXiv:1006.4945

Buchalla & Isidori, NPB 525 (1998)
Grinstein & Pirjol, PRD 62 (2000), PRD 70 (2004)
Beylich, Buchalla, Feldmann, arXiv:1101.5118

Low q2

Large recoil

High q2

Low recoil

Under control for some kinematics
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Khodjamirian, et al, arXiv:1006.4945

Buchalla & Isidori, NPB 525 (1998)
Grinstein & Pirjol, PRD 62 (2000), PRD 70 (2004)
Beylich, Buchalla, Feldmann, arXiv:1101.5118

Low q2

Large recoil

High q2

Low recoil

Under control for some kinematics

Goal: compute 
matrix elements of 
2-quark operators 

(form factors)



Data + QCD to constrain C’s
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Data + QCD to constrain C’s

narrow range of values around |CSM
7 |, however without determining the sign of C7. For this reason,

we present in the following our scans for C7 = ±CSM
7 .

In Fig. 5 we show the constraints in the C9−C10 plane from B̄ → K̄∗l+l− decays at large recoil and

B̄ → Xsl+l− data, without use of the low recoil information. On the other hand, taking into account

the B̄ → K̄∗l+l− data at low recoil only, we arrive at the constraints given in Fig. 6. We see that

the latter low recoil constraints are presently much more powerful than the others. An important

ingredient for this are the AFB measurements at low recoil constraining AFB ∝ Re{C9C∗
10} to be

SM-like, the benefits of which have already been pointed out in [13]. The individual constraints,

overlaid on top of each other, are given at 68% CL in Fig. 7. The data are consistent with each

other.

The global constraints, obtained after summing over the χ2-values of all aforementioned data,

are shown in Fig. 8. Two disjoint solutions are favored, around (CSM
9 , CSM

10 ) or in the vicinity of

(−CSM
9 ,−CSM

10 ). There appears to be space for order one deviations from either solution, regardless

of the sign of C7. Note that the flipped-sign solution around (−CSM
9 ,−CSM

10 ) for C7 = CSM
7 is

disfavored, see Fig. 7. Varying C7 between -0.5 and +0.5 and imposing the B̄ → Xsγ constraint

(a) (b)

FIG. 7: The individual 68% CL constraints on C9 and C10 from B̄ → K̄∗l+l− at large and low recoil and

B̄ → Xsl+l− for C7 = CSM
7 (a) and C7 = −CSM

7 (b) using Belle [8, 42], BaBar [43] and CDF [9] data. The

(grey) square marks the SM value of (C9, C10). See the color key at the top for the different constraints.
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Caveat

✤ The present LQCD calculation removes 

✦ Quenched approximation

✦ Shape-dependent extrapolation of LCSR from low to high q2

✤ LCSR & lattice both work in “narrow width approximation”

✤ Experiments must reconstruct K* from K π

✤ Open question how to go beyond this theoretically



Lattice data

a(fm) amsea Volume Nconf × Nsrc amval

coarse ∼0.12 0.007/0.05 203 × 64 2109× 8 0.007/0.04
0.02/0.05 203 × 64 2052× 8 0.02/0.04

fine ∼0.09 0.0062/0.031 283 × 96 1910× 8 0.0062/0.031

MILC lattices (2+1 asqtad staggered)

(px , py , pz) = (0, 0, 0).
(q̃,0,0), (0,q̃,0), (0,0,q̃), where q̃=1 or 2.
(1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1).
(1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1).

High statistics

Light meson momenta (units of 2π/L)

v=0 NRQCD used (B at rest).  

Leading order (HQET) current presently used.  

Many Source/Sink separations (16 coarse, 22 fine)

mπ (MeV)
~300
~460
~320

p2/(2π/L)2
0

1 or 4
2
3



Meson correlators

B

K*



3-point correlators

K* ← B

T = 21

T = 25



3-point correlators

K* ← B

T = 21

T = 25

T = 23



5-correlator fits

✤ One 3-point correlator whose amplitude gives matrix element

✤ Two 2-point correlators to divide out 2-pt amplitudes

✤ One 3-point correlator with precise B energy (B to P at |p’|=0)

✤ One 2-point correlator to further constrain P meson mass

130 CHAPTER 8. RARE B DECAYS

operator, can be extracted from the combination of the Euclidean 3-point function

CFJB(p′, p, x0, y0, z0) =
∑

y

∑

z

〈
ΦF (x) J(y) Φ†

B(z)
〉

e−ip′·(x−y)e−ip·(y−z) (8.22)

with the Euclidean two-point functions

CBB(p, x0, y0) =
∑

x

〈
ΦB(x) Φ†

B(y)
〉

e−ip·(x−y), (8.23)

CFF (p′, x0, y0) =
∑

x

〈
ΦF (x) Φ†

F (y)
〉

e−ip′·(x−y). (8.24)

Here, ΦB ∼ q̄′γ̂5b and ΦF ∼ q̄′γ̂5q (F = P ), ΦF ∼ q̄′γ̂jq (F = V ).

In the following we write τ = |x0− y0| and T = |x0− z0|. As in Sec. 2.2, one can show

by inserting complete sets of states that at large τ , T , and T − τ , the correlation functions

become

CFJB(p′, p, τ, T ) → A(FJB)e−EF τ e−EB(T−τ), (8.25)

CFF (p, τ) → A(FF ) e−EF τ , (8.26)

CBB(p, τ) → A(BB) e−EBτ , (8.27)

where

A(FJB) =






√
ZV

2EV

√
ZB

2EB

∑

s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| J |B(p)〉, F = V,

√
ZP

2EP

√
ZB

2EB
〈P

(
p′

)
| J |B(p)〉, F = P

(8.28)

A(BB) =
ZB

2EB
, (8.29)

A(FF ) =






∑

s

ZV

2EV
ε∗j (p

′, s)εj(p′, s), F = V (no sum over j),

ZP

2EP
, F = P.

(8.30)

Thus, the matrix elements 〈P (p′)|J |B(p)〉 and
∑

s εj(p′, s) 〈V (p′, ε(p′, s)) |J |B(p)〉 can be

extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an effective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.
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extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an effective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.

Matrix element from amplitudes



2 analyses

✤ Bayesian: 

✦ Many-exponential fit function

✦ Fit whole range of t (operator position)

✦ Fit a couple values of T (source-sink separation)

✤ Frequentist:

✦ Fewer-exponential fit functions

✦ Randomly choose (plausible) t-ranges to fit 

✦ Fit all values of T

✦ Rank “best” few fits, then use those t-ranges in bootstrap



Form factor shape

Series (z) expansion

z =
√

t+ − t − √
t+ − t0√

t+ − t +
√

t+ − t0

t± = (mB ± mF )2

t0 = 12 GeV2

t = q2

Choose, e.g.

z
branch cut

t = t+

1

t = t− t = 0

t > t+

Bourrely, Caprini, Lellouch PRD 79 (2009)
following Okubo; Bourrely, Machet, de Rafael; 
Boyd, Grinstein, Lebed; Boyd & Savage;     
Arneson et al.; FNAL/MILC lattice collab; ...

F (t) =
1

1 − t/m2
res

∑∑∑

n

anzn

Simplified series expansion



Continuum-chiral-kinematic fits

HPQCD

F (t) =
1

1 − t/m2
res

[1 + b1(aEF )2 + . . .]
∑∑∑

n

andnzn

dn = 1 + cn1
m2

P

(4πf)2
+ . . .

discretization errors

quark mass dependence



Form factor definitions

〈V (p′, ε)|q̄γ̂µb|B(p)〉 =
2iV (q2)

mB + mV
εµνρσε∗

νp′
ρpσ

〈V (p′, ε)|q̄γ̂µγ̂5b|B(p)〉 = 2mV A0(q2)
ε∗ · q

q2
qµ

+(mB + mV )A1(q2)
(

ε∗µ −
ε∗ · q

q2
qµ

)

−A2(q2)
ε∗ · q

mB + mV

(
(p + p′)µ −

m2
B − m2

V

q2
qµ

)

qν〈V (p′, ε)|q̄σ̂µν γ̂5b|B(p)〉 = iT2(q2)[ε∗
µ(m2

B − m2
V ) − (ε∗ · q)(p + p′)µ]

+iT3(q2)(ε∗ · q)
[
qµ −

q2

m2
B − m2

V

(p + p′)µ

]

qν〈V (p′, ε)|q̄σ̂µνb|B(p)〉 = 2iT1(q2)εµρτσε∗ρpτ p′σ



 B ➙K*, P(t)T1 & P(t)T2, vs. z
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 B ➙K*, T1 & T2, vs. q2/q2max
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 B ➙K*, V, A0, A1, vs. q2/q2max
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 Bs ➙φ, V, A0, A1, vs. q2/q2max
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Discretization errors
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Bs ➙K*
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Conclusions

✤ Rare decays provide new tests of weak-scale physics

✤ Low-recoil semi-leptonic decays: 

✦ Measurements + theory constrain Wilson coefficients

✤ Unquenched LQCD results

✦ B ➙ K* 

✦ Bs ➙ φ

✦ Bs ➙ K*

✦ B ➙ ρ (noisy!)



Comparison 
Green: Expt. (CDF/BaBar/LHCb + Hambrock & Hiller)
Blue: Light cone sum rules (Ball & Zwicky)
Red: Our preliminary lattice data (before extrapolation)
Orange: Quenched lattice (Becirevic, Lubicz, Mescia)

Plots from Hambrock & Hiller, 1204.4444



Quenched T1 & T2
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Figure 2: The form factors T1,2(q2) relevant for B → K∗γ∗ decay, obtained after extrapolating

(linearly and quadratically) our data at β = 6.45 in inverse heavy meson mass. Also shown are
the curves fitting the q2 dependence to the expressions given in eqs. (18,19).

11

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

T1

T2



Quenched V, A0, A1, A2
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3. Results

In principle one could compute the form factors for any value of q2 from lattice QCD.
However, states with high spatial momentum are very noisy and thus difficult to measure
on the lattice. Thus we are restricted to the high q2 end of the range. In addition, the
procedures we have introduced to control the extrapolations, separating the q2 from the
quark mass dependence, have further restricted the range of q2 away from q2

max, in the
range

12.7GeV2 ≤ q2 ≤ 18.2GeV2 . (3.1)

Moreover, the relatively small number of momentum channels for which the form factors are
extracted, six for A1, five for A0 and A2, and four for V , coupled with the interpolation at
fixed q2 imply by naive counting of degrees of freedom that we have only four independent
data for A1 and worse, two independent data for V . Fitting the functional form of the q2

dependence of the form factors is thus rather hard. However, we are free to evaluate the
form factors, and thus the differential decay rate, at any value of q2 we choose without
introducing any extra model dependence as long as it is in the range of allowed q2. In
particular we can determine a partially integrated decay rate over this range.

Figure 4 shows the four form factors on both lattices. In this case we have chosen
nine values of q2. The form factor A1 which dominates at q2

max is well determined and
is in good agreement for both lattice spacings. The other form factors, which are phase-
space suppressed, have a much noisier signal, especially for the coarser lattice. This made
the extrapolations very difficult to control. For the coarse lattice only we introduced
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Figure 4: The form factors on both lattices. The vertical scale is different for each form factor.
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