$B \rightarrow V$ form factors at low recoil

MATTHEW WINGATE DAMTP, UNIVERSITY OF CAMBRIDGE

WITH R. R. Horgan, Z. Liu, S. Meinel

Since the nineties...

- [Hat-tip B-factories]
- Are the 4 CKM parameters enough to fit global data?
- High precision now
- Lattice QCD role
- No cracks have penetrated the foundation (yet)

Since the noughties...

[Hat-tip Tevatron]

- \mathbf{P}_d and B_s mixing
- New physics in $\Delta F=2$ H_{eff} ?

SM seems OK, except for DØ like-sign dimuon CP asymmetry

Now in the tweenies...

Parkinson, Moriond QCD, March 2012

- [Hat-tip LHC]
- $b \rightarrow s$ semileptonic decays
- ***** Data for $B \rightarrow K^{(*)} \mu^+ \mu^-$ and $B_s \rightarrow \varphi \mu^+ \mu^-$
- ***** Test $b \rightarrow s H_{eff}$

$b \rightarrow s$ is rare in the SM

Dominant operators

Decays

SM operators

$$egin{aligned} & B o K^* \gamma \ & B_s o \phi \gamma \ & B o (
ho/\omega) \gamma \ \end{aligned} \ egin{aligned} & B o K^{(*)} \ell^+ \ell^- \ & B_s o \phi \ell^+ \ell^- \ & A_b o \Lambda \ell^+ \ell^- \end{aligned}$$

$$Q_{7\gamma} = \frac{e}{8\pi^2} m_b \bar{s}_i \sigma^{\mu\nu} (1+\gamma_5) b_i F_{\mu\nu}$$
$$Q_{9V} = \frac{e^2}{8\pi^2} (\bar{s}b)_{V-A} (\bar{\ell}\ell)_V$$
$$Q_{10A} = \frac{e^2}{8\pi^2} (\bar{s}b)_{V-A} (\bar{\ell}\ell)_A$$
$$Q_{2} = (\bar{s}c)_{V-A} (\bar{c}b)_{V-A}$$

Charmonium resonances

Under control for some kinematics						
Low q^2 Large recoil	Khodjamirian, et al, PLB 402 (1997) Khodjamirian, et al, arXiv:1006.4945					
High q^2	Buchalla & Isidori, NPB 525 (1998) Grinstein & Pirjol, PRD 62 (2000), PRD 70 (2004)					

Beylich, Buchalla, Feldmann, arXiv:1101.5118

Dominant operators

Decays

SM operators

Goal: compute matrix elements of 2-quark operators (form factors)

$$Q_{7\gamma} = \frac{e}{8\pi^2} m_b \bar{s}_i \sigma^{\mu\nu} (1+\gamma_5) b_i F_{\mu\nu}$$
$$Q_{9V} = \frac{e^2}{8\pi^2} (\bar{s}b)_{V-A} (\bar{\ell}\ell)_V$$
$$Q_{10A} = \frac{e^2}{8\pi^2} (\bar{s}b)_{V-A} (\bar{\ell}\ell)_A$$

$$Q_2 = (\bar{s} c)_{V-A} (\bar{c} b)_{V-A}$$

armonium resonances

Under control for some kinematics

Low q^2 KLarge recoilK

Khodjamirian, et al, PLB **402** (1997) Khodjamirian, et al, arXiv:1006.4945

High q^2 Low recoil Buchalla & Isidori, NPB **525** (1998) Grinstein & Pirjol, PRD **62** (2000), PRD **70** (2004) Beylich, Buchalla, Feldmann, arXiv:1101.5118

Data + QCD to constrain C's

• $B \rightarrow K^* \mu^+ \mu^-$ data exclude various "mirror solutions"

Data + QCD to constrain C's

Caveat

The present LQCD calculation removes

- Quenched approximation
- ✤ Shape-dependent extrapolation of LCSR from low to high q^2
- LCSR & lattice both work in "narrow width approximation"
- ***** Experiments must reconstruct K^* from $K \pi$
- Open question how to go beyond this theoretically

Lattice data

High statistics

MILC lattices (2+1 asqtad staggered)

	<i>a</i> (fm)	am _{sea}	Volume	$N_{conf} imes N_{src}$	am _{val}	<u>m</u> π (MeV)
coarse	~ 0.12	0.007/0.05	$20^{3} \times 64$	2109 × 8	0.007/0.04	~300
		0.02/0.05	$20^3 imes 64$	2052 imes 8	0.02/0.04	~460
fine	${\sim}0.09$	0.0062/0.031	$28^3 \times 96$	1910 imes 8	0.0062/0.031	~320

Light meson momenta (units of $2\pi/L$)

	$n^2/(2\pi/L)^2$
• $(p_x, p_y, p_z) = (0, 0, 0).$	<u>p ((ב),()</u> 0
• $(\tilde{q},0,0)$, $(0,\tilde{q},0)$, $(0,0,\tilde{q})$, where $\tilde{q}{=}1$ or 2.	1 or 4
 (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1). 	2
 (1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1). 	3

Many Source/Sink separations (16 coarse, 22 fine)

v=o NRQCD used (*B* at rest).

Leading order (HQET) current presently used.

Meson correlators

3-point correlators

3-point correlators

5-correlator fits

Matrix element from amplitudes

$$A^{(FJB)} = \frac{\sqrt{Z_V}}{2E_V} \frac{\sqrt{Z_B}}{2E_B} \sum_s \varepsilon_j(p', s) \langle V(p', \varepsilon(p', s)) | J | B(p) \rangle,$$

$$A^{(BB)} = \frac{Z_B}{2E_B},$$

$$A^{(FF)} = \sum_s \frac{Z_V}{2E_V} \varepsilon_j^*(p', s) \varepsilon_j(p', s)$$

One 3-point correlator whose amplitude gives matrix element

Two 2-point correlators to divide out 2-pt amplitudes

- One 3-point correlator with precise *B* energy (*B* to *P* at |p'|=0)
- One 2-point correlator to further constrain P meson mass

2 analyses

***** Bayesian:

- ✦ Many-exponential fit function
- ◆ Fit whole range of *t* (operator position)
- ◆ Fit a couple values of *T* (source-sink separation)

Frequentist:

- ✦ Fewer-exponential fit functions
- ✦ Randomly choose (plausible) *t*-ranges to fit
- Fit all values of T
- ◆ Rank "best" few fits, then use those *t*-ranges in bootstrap

Form factor shape

 $t = q^2$ $t_{\pm} = (m_B \pm m_F)^2$ Choose, e.g. $t_0 = 12 \text{ GeV}^2$ $z = rac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$

Simplified series expansion

Series (z) expansion

$$F(t) = rac{1}{1-t/m_{ ext{res}}^2} \sum_n a_n z^n$$

Bourrely, Caprini, Lellouch PRD **79** (2009) following Okubo; Bourrely, Machet, de Rafael; Boyd, Grinstein, Lebed; Boyd & Savage; Arneson *et al.;* FNAL/MILC lattice collab; ...

Continuum-chiral-kinematic fits

HPQCD

$$F(t) = \frac{1}{1 - t/m_{\rm res}^2} [1 + b_1 (aE_F)^2 + \ldots] \sum_n a_n d_n z^n$$

discretization errors

$$d_n = 1 + c_{n1} \frac{m_P^2}{(4\pi f)^2} + \dots$$

quark mass dependence

Form factor definitions

$$\begin{split} \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}b|B(p)\rangle &= \frac{2iV(q^2)}{m_B+m_V}\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu}p'_{\rho}p_{\sigma}\\ \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}\hat{\gamma}^5b|B(p)\rangle &= 2m_V A_0(q^2)\frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\\ &+(m_B+m_V)A_1(q^2)\left(\varepsilon^{*\mu}-\frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\right)\\ &+A_2(q^2)\frac{\varepsilon^*\cdot q}{m_B+m_V}\left((p+p')^{\mu}-\frac{m_B^2-m_V^2}{q^2}q^{\mu}\right) \end{split}$$

$$q^{\nu} \langle V(p',\varepsilon) | \bar{q} \hat{\sigma}_{\mu\nu} b | B(p) \rangle = 2 T_1(q^2) \epsilon_{\mu\rho\tau\sigma} \varepsilon^{*\rho} p^{\tau} p'^{\sigma}$$

$$q^{\nu} \langle V(p',\varepsilon) | \bar{q} \hat{\sigma}_{\mu\nu} \hat{\gamma}^5 b | B(p) \rangle = i T_2(q^2) [\epsilon^*_{\mu} (m_B^2 - m_V^2) - (\varepsilon^* \cdot q)(p+p')_{\mu}]$$

$$+ i T_3(q^2) (\varepsilon^* \cdot q) \left[q_{\mu} - \frac{q^2}{m_B^2 - m_V^2} (p+p')_{\mu} \right]$$

$B \rightarrow K^*$, $P(t)T_1 \& P(t)T_2$, vs. z

 $B \rightarrow K^*$, $T_1 \& T_2$, vs. $q^2/q^2 max$

 $B \rightarrow K^*$, $V, A_0, A_1, \text{vs. } q^2/q^2 \max$

 $B_s \rightarrow \varphi, V, A_0, A_1, \text{vs. } q^2/q^2 \max$

Discretization errors

 $B_s \rightarrow K^*$

Preliminary Stat/fit errors shown

Conclusions

Rare decays provide new tests of weak-scale physics

Low-recoil semi-leptonic decays:

Measurements + theory constrain Wilson coefficients

- Unquenched LQCD results
 - $\bigstar B \twoheadrightarrow K^*$
 - $\bigstar B_s \rightarrowtail \varphi$
 - $\bullet B_s \to K^*$
 - \bullet *B* → *ρ* (noisy!)

Comparison

Green: Expt. (CDF/BaBar/LHCb + Hambrock & Hiller) Blue: Light cone sum rules (Ball & Zwicky) Red: Our preliminary lattice data (before extrapolation) Orange: Quenched lattice (Becirevic, Lubicz, Mescia)

Plots from Hambrock & Hiller, 1204.4444

Quenched $T_1 \& T_2$

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

Quenched V, A_0, A_1, A_2

 $q^2 (GeV)^2$ $q^2 (GeV)^2$ $\frac{20}{3}$ 12 14 20 12 14 16 18 10 18 16 A2A1 0.6 2.5 2 0.4 1.5 0.2 β=6.2 0.5 β=6.0 0 0 V A0 2.5 3 2 1.5 2 0.5 0 ⊾ 10 $\begin{array}{c} 1\\20 \end{array}$ $\frac{14}{q^2} \frac{16}{(GeV)^2}$ 18 20 12 16 18 14 12 $q^2 (GeV)^2$

Bowler, Gill, Maynard, Flynn, JHEP 05 (2004) 035

