Chiral behavior of kaon semileptonic form factors in lattice QCD with exact chiral symmetry

T. Kaneko for JLQCD collaboration

KEK Theory Center

Lattice 2012, June 26, 2012

1. introduction

 $K \to \pi$ decay form factors

$$\langle \pi^+(p')|V_\mu|K^0(p)\rangle = (p+p')_\mu f_+(q^2) + (p-p')_\mu f_-(q^2),$$

$$f_0(q^2) = f_+(q^2) + \frac{q^2}{M_K^2 - M_\pi^2} f_-(q^2), \qquad \xi(q^2) = \frac{f_-(q^2)}{f_+(q^2)}$$

• vector form factor at $q^2 = 0$: $f_+(0) \Leftrightarrow$ determination of $|V_{us}|$

• $M_{\pi, sim} \lesssim M_K$: $N_f = 3$: *RBC/UKQCD*, 2008,2010, $N_f = 2$: *ETM*, 2009 (see also MILC/FNAL/HPQCD, 2005; FNAL/MILC @ Lat'11)

• $\Gamma \Rightarrow |V_{us}|f_+(0) = 0.2163(5)$ (FlaviaNet, 2010) $\Leftrightarrow f_+(0)$ w/ $\lesssim 1$ % accuracy

• other information of ME : $f_{-}(0)$, $\lambda_{+,0}^{\prime,\prime\prime} \Leftrightarrow$ consistency with ChPT, exp't

introdu	introduction
1. introduction	

this talk

report on JLQCD's calculation of $K \rightarrow \pi$ form factors in $N_f = 2 + 1$ QCD

• overlap quarks \Rightarrow straightforward comparison w/ ChPT (a=0)

● all-to-all quark prop. ⇒ precise calculation of relevant meson correlators

outline

- simulation method
- q^2 interpolation
- o chiral extrapolation

configurations

• $N_f = 2 + 1 \text{ QCD}$

- Iwasaki gauge + overlap quarks + $det[H_W^2]/det[H_W^2 + \mu^2] \Rightarrow$ speed up, fix Q
- a = 0.1120(5)(3) fm (M_{Ω} as input) $\Leftrightarrow O((a\Lambda_{\rm QCD})^2) \approx 8\%$ error

configurations

• $N_f = 2 + 1 \text{ QCD}$

- Iwasaki gauge + overlap quarks + $det[H_W^2]/det[H_W^2 + \mu^2] \Rightarrow$ speed up, fix Q
- a = 0.1120(5)(3) fm (M_{Ω} as input) $\Leftrightarrow O((a\Lambda_{\rm QCD})^2) \approx 8\%$ error

measurements of meson correlators

- 4 m_{ud} 's $\Rightarrow M_{\pi} \simeq 290 540 \text{ MeV};$ $m_s = 0.080 \Leftrightarrow m_{s, \text{phys}} = 0.081$ • $16^3 \times 48 \text{ or } 24^3 \times 48 \text{ (depending on } m_{ud}) \Rightarrow M_{\pi}L \gtrsim 4$
- in Q = 0 sector \Rightarrow fixed Q effects $\propto V^{-1}$; sub-% for $M_{\{\pi,K\}}$, $f_{\{\pi,K\}}$
- 50 conf imes 50 HMC traj. for each (m_{ud} , m_s)

configurations

• $N_f = 2 + 1 \text{ QCD}$

- Iwasaki gauge + overlap quarks + $det[H_W^2]/det[H_W^2 + \mu^2] \Rightarrow$ speed up, fix Q
- a = 0.1120(5)(3) fm (M_{Ω} as input) $\Leftrightarrow O((a\Lambda_{\rm QCD})^2) \approx 8\%$ error

measurements of meson correlators

- 4 m_{ud} 's $\Rightarrow M_{\pi} \simeq$ 290 540 MeV; $m_s = 0.080 \Leftrightarrow m_{s, phys} = 0.081$
- $16^3 imes 48$ or $24^3 imes 48$ (depending on m_{ud}) $\Rightarrow M_{\pi}L \gtrsim$ 4
- in Q=0 sector \Rightarrow fixed Q effects $\propto V^{-1}$; sub-% for $M_{\{\pi,K\}}$, $f_{\{\pi,K\}}$
- 50 conf imes 50 HMC traj. for each (m_{ud} , m_s)
- w/ all-to-all propagator \Rightarrow 160 240 low-modes + noise method
- twisted boundary conditions (TBCs) $\Rightarrow q^2 \in [-0.1 \, \text{GeV}^2, q^2_{\text{max}}]$
- reweighting \Rightarrow additional $m_s = 0.060$

2.2 simulations : ratio method

ratio method (Hashimoto et al., 1999)

$$C_{V_{\mu}}^{PQ}(\mathbf{p},\mathbf{p}') = \langle \mathcal{O}_{Q}(\mathbf{p}')V_{\mu,\text{lat}}\mathcal{O}_{P}^{\dagger}(\mathbf{p}) \rangle \sim \frac{\sqrt{Z_{Q}(\mathbf{p}')Z_{P}(\mathbf{p})}}{4E_{P}E_{Q}Z_{V}} \langle Q(\mathbf{p}')|V_{\mu}|P(\mathbf{p}) \rangle e^{-E_{Q}\Delta t'-E_{P}\Delta t}$$

$$C^{P}(\mathbf{p}) = \langle \mathcal{O}_{P}(\mathbf{p}') \mathcal{O}_{P}^{\dagger}(\mathbf{p}) \rangle \sim \frac{Z_{P}}{2E_{P}} e^{-E_{Q} \Delta t'} \quad (P, Q = K \text{ or } \pi)$$

(partially) cancel Z_V , $\exp[-E_{\pi(K)}\Delta t]$, fluctuation in $C_{V_u}^{PQ}(\mathbf{p},\mathbf{p}')$ and $C^P(\mathbf{p})$

$$R = \frac{C_{V_4}^{K\pi}(\mathbf{0}, \mathbf{0}) C_{V_4}^{\pi K}(\mathbf{0}, \mathbf{0})}{C_{V_4}^{K\pi}(\mathbf{0}, \mathbf{0}) C_{V_4}^{\pi\pi}(\mathbf{0}, \mathbf{0})} \longrightarrow \frac{(M_K + M_\pi)^2}{4M_K M_\pi} f_0(q_{\max}^2)^2 \quad (q_{\max}^2 = (M_K - M_\pi)^2)$$

$$\tilde{R} = \frac{C_{V_4}^{K\pi}(\mathbf{p}, \mathbf{p}') C^K(\mathbf{0}) C^{\pi}(\mathbf{0})}{C_{V_4}^{K\pi}(\mathbf{0}, \mathbf{0}) C^K(\mathbf{p}) C^{\pi}(\mathbf{p}')} \longrightarrow \left\{ 1 + \frac{E_K(\mathbf{p}) - E_\pi(\mathbf{p}')}{E_K(\mathbf{p}) + E_\pi(\mathbf{p}')} \xi(q^2) \right\} \frac{f_+(q^2)}{f_0(q_{\max}^2)}$$

$$R_k = \frac{C_{V_k}^{K\pi}(\mathbf{p}, \mathbf{p}') C_{V_4}^{KK}(\mathbf{p}, \mathbf{p}')}{C_{V_4}^{K\pi}(\mathbf{p}, \mathbf{p}') C_{V_k}^{KK}(\mathbf{p}, \mathbf{p}')} \longrightarrow \text{ a function of } \xi(q^2)$$

all-to-all prop. + ratio method $\Rightarrow \Delta[f_{+,0}(q^2)] \lesssim 1\%, \quad \Delta[\xi(q^2)] \sim 10 - 30\%$

2.3 simulations : reweighting

reweighting \Rightarrow can impair stat. accuracy

$$\langle C^{PQ}_{V_{\mu}} \rangle_{m'_s} = \langle C^{PQ}_{V_{\mu}} \, \tilde{w}(m'_s, m_s) \rangle_{m_s}$$

$$\tilde{w}(m'_s, m_s) = \frac{w(m'_s, m_s)}{\langle w(m'_s, m_s) \rangle_{m_s}}$$

$$\begin{split} w(m'_s, m_s) &= \det[D(m'_s)] / \det[D(m_s)] \\ &= \frac{\prod_{k=1}^{N_e} \lambda_k(m'_s)}{\prod_{k=1}^{N_e} \lambda_k(m_s)} \times \frac{1}{N_r} \sum_{r=1}^{N_r} e^{-\frac{1}{2} \xi_r^{\dagger} \frac{D(m'_s)}{D(m_s)}} \end{split}$$

- $24^3(16^3) \times 48$, \approx 200 low-modes
 - \Rightarrow do not need large N_r
- largely increase $\Delta[C_{V\mu}^{PQ}]$
- at most × 2 for ratios

all-to-all + ratio + reweight

$$\Rightarrow \quad \Delta[f_{+,0}(q^2)] \lesssim \textbf{1.5\%}, \quad \Delta[\xi(q^2)] \sim \textbf{20} - \textbf{40\%}$$

 q^2 -dependence

 q^2 dependence

3. q^2 -dependence

 $f_0(q^2)$ VS q^2

• reweighting \Rightarrow slightly larger error

• small curvature in simulated region of q^2

 $\Leftrightarrow M_{\text{pole}} = 1.2 - 1.3 \text{ GeV} @ m_{q, \text{phys}} (PDG, 2010) \Rightarrow q^4/M_{\text{pole}}^4 \lesssim 0.6\%$

well described by any of

 $f_0(q^2) = f_0(0)(1+a_1q^2), \quad f_0(0)(1+a_1q^2+a_2q^4), \quad \frac{f_0(0)}{1-q^2/M_{\rm pole}^2}$

 q^2 -dependence

 q^2 dependence

fit results for $f_{\{+,0\}}(0)$

3. q^2 -dependence

$f_0(q^2)$ vs q^2

- small finite volume effects \Leftrightarrow lattice boundaries + fixed Q $16^3 \times 48 \Leftrightarrow 24^3 \times 48$: $\lesssim 0.8\%$ ($\lesssim 2.1\sigma$) $\Rightarrow 24^3 \times 48 \Leftrightarrow V = \infty$: even smaller
- $f_+(0) = f_0(0)$, $f'_{\{+,0\}}(0)$: stable against choice of fit form
- employ simultaneous fit to $f_0(q^2)$ and $f_+(q^2) \Rightarrow f_+(0), f'_{\{+,0\}}(0)$

chiral fit $f_{+}(0) \langle r^2 \rangle_V^{K\pi} \xi(0)$

4.1 chiral fit : $f_+(0)$

chiral expansions (cf. JLQCD, 2008)

$$f_+(0) = 1 + f_2 + f_4 + \dots = 1 + f_2 + \Delta f$$

• $x_{\pi(K)} \equiv M_{\pi(K)}^2/(4\pi F_0)^2$ ("x-expansion") small $F_0 = 52.5(5.1) \text{ MeV} \ll F_{\pi} \Rightarrow$ enhanced chiral corrections $\mathcal{O}_{2n} = (M_{\pi}/F_0)^{2n}$

• $\xi_{\pi(K)} \equiv M_{\pi(K)}^2 / (4\pi F_{\pi})^2$ ("\xeta-expansion")

better convergence for $M_{\{\pi,K\}}$, $F_{\{\pi,K\}}$ ~ (JLQCD, 2008 $(N_f=2)$; 2009 $(N_f=2+1)$)

chiral fit $f_{+}(0) \langle r^2 \rangle_V^{K\pi} \xi(0)$

4.1 chiral fit : $f_+(0)$

chiral expansions (cf. JLQCD, 2008)

$$f_+(0) = 1 + f_2 + f_4 + \dots = 1 + f_2 + \Delta f$$

• $x_{\pi(K)} \equiv M_{\pi(K)}^2/(4\pi F_0)^2$ ("x-expansion") small $F_0 = 52.5(5.1) \text{ MeV} \ll F_{\pi} \Rightarrow$ enhanced chiral corrections $\mathcal{O}_{2n} = (M_{\pi}/F_0)^{2n}$

•
$$\xi_{\pi(K)} \equiv M_{\pi(K)}^2 / (4\pi F_{\pi})^2$$
 (" ξ -expansion")
better convergence for $M_{\{\pi,K\}}$, $F_{\{\pi,K\}}$ (JLQCD, 2008 ($N_f = 2$); 2009 ($N_f = 2 + 1$))

fitting w/ ξ -expansion

- NLO (Gasser-Leutwyler, 1985) Ademollo-Gatto $\Rightarrow f_2(F_{\pi}, M_{\{\pi, K, \eta\}})$
- NNLO and higher orders (Post-Schilcher, 2001; Bijnens-Talavera, 2003) $\Delta f(F_{\pi}, \{L_i\}, \{C_i\}, M_{\{\pi, K, \eta\}})$
- modeling Δf (as in previous studies) $\Delta f = (M_K^2 - M_\pi^2)^2 (c_4 + c_4' \ln[$

$$n[\xi_{\pi}], \ c_{4}'' \ln^{2}[\xi_{\pi}], \ c_{6,\pi}\xi_{\pi}, \ c_{6,K}\xi_{K})$$

 $f_{\perp}(0) \langle r^2 \rangle_V^{K\pi} \xi(0)$ chiral fit

4.1 chiral fit : $f_{+}(0)$

• parameterizations of $\Delta f/(M_{\kappa}^2 - M_{\pi}^2)^2$ • $c_4 + c_{6,\pi} \xi_{\pi} \Rightarrow$ central value • $c_4 + c'_{4,\pi} \ln[\xi_\pi]$ (ill-determined c_X) • $c_4 + c''_{4\pi} \ln^2[\xi_\pi]$ (ill-determined c_X) $\circ c_4 + c_{6,\pi} \xi_{\pi} + c_{6,K} \xi_K$

• assume
$$O((a\Lambda)^2)$$
 error in $f_2 + \Delta f$

 $f_{+}(0) = 0.959(6)_{\text{stat}}(4)_{\text{chiral}}(3)_{a \neq 0}$ $= 1 - 0.024 [f_2] - 0.018(8) [\Delta f]$

 $\Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$ $= -1(9) \times 10^{-4}$

Chiral behavior of kaon semileptonic form factors in lattice QCD

chiral fit $f_{+}(0) \langle r^{2} \rangle_{V}^{K\pi} \xi(0)$

4.2 chiral fit : $\langle r^2 \rangle_V^{K\pi}$

slope of $f_+(q^2)$

•
$$f_+(q^2) = f_+(0) \left\{ 1 + (1/6) \langle r^2 \rangle_V^{K\pi} q^2 + \cdots \right\}$$

• SU(3) NLO ChPT (Gasser-Leutwyler, 1985) + NNLO analy., ξ -expansion,

 $\langle r^2 \rangle_V^{K\pi} = 12 L_9^r / F_\pi^2 - (1/F_\pi^2)$ "logs" + $c_\pi \xi_\pi + c_K \xi_K$

- $\begin{aligned} & \bullet \quad \text{significant NNLO} @ \ m_{ud(s), \text{sim}} \\ & \Rightarrow \quad \text{milder} \ m_{ud} \text{-dependence} \\ & \Leftrightarrow \ \langle r^2 \rangle_V^\pi, \ \langle r^2 \rangle_V^K \ (\textit{JLQCD}, N_f = 2, 3) \end{aligned}$
- $L_9^r(M_{\rho})$: consistent w/ pheno.
 - $L_9^r = 4.3(0.6)(0.3) \times 10^{-3}$
 - pheno. : $5.91(4) \times 10^{-3}$

(Bijnens, 2007, ¿-expansion)

• $\langle r^2 \rangle_V^{K\pi}$: consistent w/ exp't

Chiral behavior of kaon semileptonic form factors in lattice QCD

-0.10

-0.15

PFG, 2004

T. Kaneko

(for simplicity) fit form linear in $(M_K^2 - M_\pi^2)$: $\xi(0) = c_0 + c_1(M_K^2 - M_\pi^2)$

one-loop chiral log.s (and two-loops?) should be included (Bijnens-Talavera 2003)

0.00

 $cf. \quad f_{-\text{ analy}}(q^2) = (M_K^2 - M_\pi^2) (4L_5^r/F_\pi^2 - 2L_9^r/F_\pi^2)$

vanish in SU(3) limit as expected : c₀ = -0.0022(25)
 consistent w/ experiment : ξ(0) = -0.125(23) (PDG 2004, K⁺₁₃)

-0.06

-0.10

۲

 a^{2} [GeV²]

• mild q^2 dependence w/ our statistical accuracy

 $M_{\nu}^{2} - M_{\pi}^{2} [\text{GeV}^{2}]$

(Bijnens-Talavera 2003)

0.2

5. summary

kaon semileptonic form factors in $N_f = 2 + 1$ QCD with overlap quarks

techniques

- all-to-all propagators \Rightarrow precise determination of $f_{+,0}(q^2)$
- TBCs \Rightarrow precise determination of $f_+(0)$, $\xi(0)$, $\langle r^2 \rangle_{V,S}^{K\pi}$
- reweighting \Rightarrow additional m_s
- chiral fits

• $f_{+}(0) = 0.959(6)_{\text{stat}}(4)_{\text{chiral}}(3)_{a \neq 0}$ $\Rightarrow |V_{us}| = 0.2256(19), |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -1 (9) \times 10^{-4}$ • $\langle r^2 \rangle_{V}^{K\pi}, \ \xi(0)$: reasonably consistent w/ exp't

- future directions
 - further refinements ⇔ more rigorous treatment of NNLO ⇔ overlap quarks
 - $\pi, K \text{ EM form factors } \Leftrightarrow \text{ test of ChPT}$
 - D, B meson decays \Leftrightarrow flavor physics

6.1 appendix : F_0

F_0

 phenomenological estimates (Bijnens @ Lattice'07; µ = 0.77 GeV)

$10^{3}L_{4}^{r}$	$\equiv 0$	$\equiv 0.5$	\equiv 0.2
$10^{3}L_{6}^{r}$	$\equiv 0$	≡0.1	$\equiv 0$
F_0 [MeV]	87.7	70.4	80.4

- JLQCD's analysis (Noaki @ Lattice'10)
 - NNLO fit to $M_{\{\pi,K\}}$, $F_{\{\pi,K\}}$
 - chiral expansion w/ M_{π}^2/F_{π}^2 instead of M_{π}^2/F_0
 - \Rightarrow better convergence
 - ${\, \bullet \,}$ single lattice spacing ${\sim \,}$ 0.11 fm
 - $F_0 = 52.5(5.1) \text{ MeV}$

