Probing novel interactions at the TeV scale using precision measurements of neutron beta decay

Rajan Gupta Theoretical Division Los Alamos National Lab

CIPANP-2012

Theory and Experimental effort centered at LANL

Theory and Lattice QCD Collaboration (PNDME)

arXiv:1110.6448 PRD85:5 (2012) 054512

- Tanmoy Bhattacharya (LANL)
- Vincenzo Cirigliano (LANL)
- Saul Cohen (U of Washington)
- Alberto Filipuzzi
 (Valencia, Spain)
- Martin Gonzalez-Alonso (Madison, Wisconsin)
- Michael Graesser (LANL)
- Rajan Gupta (LANL)
- Anosh Joseph (LANL)
- Huey-Wen Lin
 (U of Washington)
- Kostas Originos (William and Mary)

$$H_{\text{eff}} = G_F \left[J_{V-A}^{\text{lept}} \times J_{V-A}^{\text{quark}} + \sum_{n=1,10} \epsilon_n^{\text{BSM}} \hat{O}_n \right]$$

$$\epsilon_S \ \bar{u}d \times \bar{e}(1-\gamma_5)\nu_e \qquad \epsilon_T \ \bar{u}\sigma_{\mu\nu}d \times \bar{e}\sigma^{\mu\nu}(1-\gamma_5)\nu_e$$

At leading order, contributions from BSM physics arise due to interference of A_{SM} and A_{BSM} and contribute to b and B_1 only through ε_S and ε_T

3

Ultra Cold Neutron Decay: Parameters sensitive to new physics

Neutron decay can be parameterized as

$$d\Gamma \propto F(E_e) \left[1 + \frac{b}{E_e} \frac{m_e}{E_e} + \left(B_0 + \frac{B_1}{E_e} \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right]$$

- *b:* Deviations from the leading order electron spectrum: Fierz interference term
- B_1 : Energy dependent part of antineutrino correlation with neutron spin

Physics Case: (BSM/SM) ~ O(1)

- Couplings $\epsilon_{P,S,T} \sim (\Lambda_{BSM})^2/G_F \sim (v/\Lambda_{BSM})^2 \sim 10^{-3}$
- Recoil corrections: $q/M_N \sim 10^{-3}$
- Radiative corrections: $\alpha/\pi \sim 10^{-3}$
- Isospin-breaking: $(M_N M_P)/M_N \sim q/M_N \sim 10^{-3}$
- UCN: small Doppler broadening of *e* spectrum
- SM known to (~10⁻⁵): contribution is controlled by 2 small parameters (M_n - M_p)/ M_n and α/π
- Unique: scalar and tensor BSM interactions involve helicity-flip (m_e/E_e suppression) and are hard to detect in high energy experiments

Physics program

• In order to bound ε_s and ε_T and quantify significance of the results, we are pursuing an integrated experimental and theoretical program

$$\begin{array}{c} b = f_{b} \left(\epsilon_{S,T} \ g_{S,T} \right) \\ B_{1} = f_{B} \left(\epsilon_{S,T} \ g_{S,T} \right) \\ Measure these quantities \\ with UCNs \end{array} \qquad \begin{array}{c} g_{S} \sim \langle p | \overline{u} d | n \rangle \\ g_{T} \sim \langle p | \overline{u} \sigma_{\mu\nu} d | n \rangle \\ \end{array}$$

Analyze bounds on ε_S and ε_T from multiple measurements (including LHC signals). Examine BSM extensions

Relating *b* and B_1 to BSM couplings

Linear order relations from $n \rightarrow p e v decay$

$$b^{BSM} \approx 0.34 g_s \varepsilon_s - 5.22 g_T \varepsilon_T$$

$$b_{v}^{BSM} \equiv B_{1}^{BSM} = E_{e} \frac{\partial B^{BSM}(E_{e})}{\partial m_{e}} \approx 0.44 g_{s} \varepsilon_{s} - 4.85 g_{T} \varepsilon_{T}$$

Constraining allowed region in ϵ_{S} and ϵ_{T} as estimates of g_{S} and g_{T} are improved

Impact of reducing errors in g_S and g_T from 50 \rightarrow 10%

Allowed region in [ϵ_S , ϵ_T] (90% contours)

9

Precision calculations of g_S , g_T using Lattice QCD

Goal: 10-20% accuracy

T. Bhattacharya, S. Cohen, R. Gupta, A. Joseph, H-W Lin

Achieving 10-20% uncertainty is a realistic goal but requires:

- High Statistics: computer resources from USQCD, XSEDE, LANL
- Controlling all Systematic Errors:
 - Finite volume effects

•

- Contamination from excited states
- Chiral Extrapolations to physical *u* and *d* quark masses
- Extrapolation to the continuum limit (lattice spacing $a \rightarrow 0$)
- Non-perturbative renormalization of bilinears using the RI_{mom} scheme

Lattice setup: Choices we made

- Gauge configurations with 2+1+1 flavor of dynamical quarks
 - HISQ lattices generated by the MILC collaboration (short-term)
 - Clover lattices generated by the JLab collaboration (longer-term)
- Analysis using clover fermions (Phase 1: Clover on HISQ)
 - Exceptional Configurations extensive tests
- Improving Signal in Baryon Correlators Source Smearing size
- Study multiple time separations between the source (neutron) and sink (proton) to study & reduce excited state contribution

2+1+1 flavor HISQ lattices: goal 1000 configs

- m_s set to its physical value using $M_{\overline{ss}}$

a(fm)	m _l /m _s	Lattice Volume	M _π L	M _π (MeV)	Configs. Analyzed
0.12	0.2	24 ³ × 64	4.54	305	507
0.12	0.1	32 ³ × 64	4.29	217	478
0.09	0.2	32 ³ × 96	4.5	313	391
0.09	0.1	48 ³ × 96	4.73	220	443
0.06	0.2	48 ³ × 144	4.53	320	330
0.06	0.1	64 ³ × 144	4.28	229	

Signal in 2-point baryon correlators

- Statistics
- Plateau (result should be independent of *t*)

Otherwise eliminate excited state contribution

• Non-perturbative calculation of renormalization Z_{Γ}

One-state versus two-state fit

The calculation of g_S will dictate the statistics needed

Preliminary ¹⁶

Uncertainty in the chiral extrapolation

17

Reducing uncertainty in the chiral extrapolation

18

New Preliminary Estimates

New Preliminary Estimates

The calculation of g_S will dictate the statistics needed

In Progress: Renormalization of Bilinears

- Non-perturbative renormalization Z_{Γ} using the RI_{smom} scheme
 - Need quark propagator in momentum space

• Construct ratios with respect to charge ($\Gamma = \gamma_t$) to reduce systematic errors

$Z_{\psi}Z_{S}$ (a=0.12, M_{π}=310 MeV)

$Z_{\psi}Z_{T}$ (a=0.12, M_{π}=310 MeV)

Z_{ψ} (a=0.12, M_{π}=310 MeV)

24

Continuum extrapolation

- Continuum extrapolation using *a* = 0.12, 0.09,
 0.06 fm after Z_Γ have been calculated & included
- To quantify *a* dependence in *g_S* and *g_T* we need to reduce errors

– need full 1000 configurations at a=0.12 fm

Summary

- GOAL: To use experimental measurements of *b* and b- b_v at the 10⁻³ level to bound ε_S and ε_T requires calculation of g_T and g_S at the 10-20% level
- 2011: Lattice QCD estimates of g_S and g_T improved the bounds on ε_S and ε_T compared to previous estimates based on phenomenological models
- 2013: Lattice calculations are on track to providing g_T and g_S with 10-20% uncertainty

β-decay versus LHC constraints

• LHC @ 14 TeV and 300 fb⁻¹, will provide comparable constraints to low-energy ones with $\delta g_S/g_S \sim 20\%$

Acknowledgements

- Computing resources from
 - USQCD
 - XSEDE
 - LANL
- 2+1+1 HISQ lattices generated by the MILC collaboration
- Computer code uses CHROMA library
- Supported by DOE and LANL-LDRD