Determining V_{us} from semi leptonic Kaon decays

Karthee Sivalingam PA Boyle, JM Flynn, A Jüttner, CT Sachrajda, J Zanotti

CKM Matrix

Quarks may change their flavors through electro-weak interaction.

$$\begin{bmatrix} d'\\s'\\b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d\\s\\b \end{bmatrix}$$

Search deviations from unitarity \rightarrow search for physics beyond the SM.

The most sensitive test of the unitarity of the CKM matrix is provided by the relation

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta$$

In the above unitarity test, $|V_{ud}|$ is precisely determined, and $|V_{ub}|$ is usually neglected as it is very small so that leaves us with $|V_{us}|$

Our previous result - $|V_{us}| = 0.9599(34)_{stat} {+31 \choose -43}_{\chi} (14)_{a}$ dominated by uncertainty in chiral extrapolations

V_{us}

Semi-leptonic decays involve changes to flavors of quarks, or mixing of quarks, and from these processes we can determine CKM matrix elements

 $K \rightarrow \pi l \nu (Kl3)$ semi-leptonic decay process leads to the determination of $|V_{us}|$

In a KI3 decay, the decay rate can be written as

$$\Gamma = G_F^2 M_K^2 C^2 / 192\pi^2 S_{ew} (1 + \delta_{em}) |V_{us}|^2 |f_+(0)|^2$$
Known constants
Known corrections
formfactor

The decay rate can be precisely estimated from experiments of semi-leptonic $K \rightarrow \pi$ decays and hence the value of the product $|f_+(0)|^2 |V_{us}|^2$

The determination of $f_+(0)$ using Lattice QCD is important in estimating V_{us}

$f_{+}(0)$

 $f_+(0)$ is defined from the $K \to \pi$ matrix element of the weak vector current (V_μ) at zero momentum transfer

$$\langle \pi(p') | V_{\mu} | K(p) \rangle = (p_{\mu} + p'_{\mu}) f_{+}(q^{2}) + (p_{\mu} - p'_{\mu}) f_{-}(q^{2})$$

where $q^2 = (p - p')^2$

current conservation implies that $f_+(0) = 1$ [SU(3) flavour limit $m_{\pi}^2 = m_K^2$]

Ademollo-Gatto Theorem : SU(3) breaking effects in

$$f_{+}(0) = 1 + f_{2} + f_{4} + O(p^{6}), \quad f_{n} = O(m_{\pi}^{n}, K, \eta)$$
$$\Delta f = 1 + f_{2} - f_{+}(0)$$

standard result from Leutwyler & Roos (1984) $\Delta f = -0.016(8)$

 $\langle \pi(\boldsymbol{p}_{\boldsymbol{f}}) | V_{\mu} | K(\boldsymbol{p}_{\boldsymbol{i}}) \rangle$

Construct ratios of correlation functions , such that we can extract the matrix element $\langle \pi(\mathbf{p}_f) | V_\mu | K(\mathbf{p}_i) \rangle$

$$\langle \pi(\boldsymbol{p}_{f}) | V_{\mu} | K(\boldsymbol{p}_{i}) \rangle = \begin{bmatrix} R_{1,p_{i},p_{f}} = 4\sqrt{E_{i}E_{f}} \sqrt{\frac{C_{K\pi}(p_{i},p_{f})C_{\pi K}(p_{f},p_{i})}{C_{K}(p_{i})C_{\pi}(p_{f})}} \\ R_{2,p_{i},p_{f}} = 2\sqrt{E_{i}E_{f}} \sqrt{\frac{C_{K\pi}(p_{i},p_{f})C_{\pi K}(p_{f},p_{i})}{C_{KK}(p_{i},p_{i})C_{\pi\pi}(p_{f},p_{f})}} \end{bmatrix}$$

Where $C_K(p_i)$ is the Kaon two point functions $C_{K\pi}(p_i, p_f)$ is the Kaon to Pion three point function and similarly ...

So far ...

So far ...

And Happily lived ever after

•••

Existing Method

Measure 2-pt and 3-pt correlation functions from Lattice QCD simulations

Periodic boundary condition results in hadronic momenta (p) quantized as

 $p_i = \frac{2\pi}{L} n_i$ where L is the cubic volume, n_i 's are integers. Calculate $f_+(q^2)$ for different q by constructing ratios Find $f_+(0)$ by interpolating to $q^2 = 0$

Simulations performed at mass higher than the physical mass.

Extrapolate $f_+(0)$ result to that of actual physical mass of mesons. (chiral extrapolation)

Errors due to interpolation, extrapolation and finite volume effects.

Interpolation to $q^2 = 0$

$$f_+(0)_{pole} = 0.9774(35)$$

$f_+(0)_{quad} = 0.9749(59)$

 \sim 0.2% Systematic error from difference in pole and quadratic fits

Twisted boundary condition

Twisted boundary condition allows momenta smaller than $2\pi/L$ to be simulated

By partially twisting the boundary conditions of the quarks (θ_i, θ_f) , the momentum transfer q^2 can be modified as follows

$$q^{2} = \left\{ \left[E_{i}(\vec{p}_{i}) - E_{f}(\vec{p}_{f}) \right]^{2} - \left[\left(p_{\overrightarrow{FT},i} + \frac{\vec{\theta}_{i}}{L} \right) - \left(p_{\overrightarrow{FT},f} + \frac{\vec{\theta}_{f}}{L} \right) \right] \right\}$$

We can evaluate $K \rightarrow \pi$ formfactor by applying twist to Kaon or pion such that $q^2 = 0$. The twist angle can be evaluated as

$$\begin{aligned} \left| \vec{\theta}_K \right| &= L \sqrt{\frac{(m_K^2 + m_\pi^2)}{2m_\pi} - m_K^2} \quad \left| \vec{\theta}_\pi \right| = 0 \quad \text{or} \\ \left| \vec{\theta}_\pi \right| &= L \sqrt{\frac{(m_K^2 + m_\pi^2)}{2m_K} - m_\pi^2} \quad \left| \vec{\theta}_K \right| = 0 \end{aligned}$$

Twisted boundary results

 $f_+(0) = 0.9757(44)$

[PA Boyle et al arXiv:1004.0886v1]

Lattice 2012

Results

We simulate at

 N_f = 2+1 dynamical flavours

Iwasaki gauge action + Domain Wall Fermion (DWF) action 1.73^{-1} , $24^3 \times 64 \times 16$ 2.28^{-1} , $32^3 \times 64 \times 16$ (fine) New data

Iwasaki + Dislocation-Suppressing-Determinant-Ratio DSDR + DWF 1.35^{-1} , $32^3 \times 64 \times 32$ (coarse) **New data**

With different strange quark masses

Using HPC facilities QCDOC, BlueGene-P and BlueGene-Q

Global fit

Simultaneous fit all data to q^2 , $m_{\pi}{}^2$, $m_{K}{}^2$ using the ansatz

$$f_0(q^2, m_\pi^2, m_K^2) = \frac{1 + f_2 + (m_K^2 - m_\pi^2)^2 \{A_0 + A_1(m_K^2 + m_\pi^2)\}}{1 - q^2/(M_0 + M_1(m_K^2 + m_\pi^2))^2}$$

With four fit parameters A_0, A_1, M_0, M_1

Expression motivated from the Ademollo-Gatto Theorem

$f_+(0)$ vs m_{π}^2 dependence -no strange quark mass correction

 $f_+(0)$ vs m_{π}^2 dependence with correction for strange quark mass $f_0(q^2, m_{\pi}^{latt}, m_K^{latt}) - f_0(q^2, m_{\pi}^{phys}, m_K^{phys})$

$f_+(0)$ vs m_{π}^2 dependence with correction $f_0(q^2, m_{\pi}^{latt}, m_K^{latt}) - f_0(q^2, m_{\pi}^{phys}, m_K^{phys})$

$f_+(0)$ vs $\overline{m_\pi^2}$ dependence with correction $f_0(q^2, m_\pi^{latt}, m_K^{latt}) - f_0(q^2, m_\pi^{phys}, m_K^{phys})$

Comparison of Lattice results (blue squares) with various model estimates based on $_{\rm X}$ PT (red triangles)

PA Boyle et al PRL 100,141601(2008)

Comparison of Lattice results (blue squares) with various model estimates based on $_{\rm X}$ PT (red triangles)

RBC+UKQCD 2012 - Expected Preliminary result

Conclusion

We can determine CKM Matrix element V_{us} precisely using kl3 semi-leptonic decays

By appropriate choice of twisted boundary conditions systematic errors due to q^2 interpolation can be removed

Uncertainty dominated by Chiral extrapolation

Measurement made on different lattice spacing and volume with m_{π} as low as 170 MeV

Chiral extrapolation error for $f_{+}^{K\pi}(0)$ can be almost halved

Outlook : Larger volume, smaller spacing, Exascale Computing

Obrigadol

