K semileptonic decays form factors with HISQ valence quarks

Elvira Gámiz

for Lattice Fermilab/MILC Collaboration

Universidad de Granada

The XXIX International Symposium on Lattice Field Theory

· Cairns (Australia) 25-30 June 2012 ·

1. Introduction

Experimental average, Antonelli et al. (Flavianet), 1005.2323

 $|V_{us}|f_{+}(0)^{K \to \pi} = 0.2163(\pm 0.23\%) \qquad f_{+}(0)^{K \to \pi} : \begin{array}{c} +0.5\% \\ -0.6\% \\ \text{RBC/UKQCD, EPJC69(2010)} \end{array}$

* Check unitarity in the first row of CKM matrix.

 $\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0001(6)$ M. Antonelli et al

1. Introduction

Experimental average, Antonelli et al. (Flavianet), 1005.2323

 $|V_{us}|f_{+}(0)^{K \to \pi} = 0.2163(\pm 0.23\%) \qquad f_{+}(0)^{K \to \pi} : \begin{array}{c} +0.5\% \\ -0.6\% \\ \text{RBC/UKQCD, EPJC69(2010)} \end{array}$

* Check unitarity in the first row of CKM matrix.

 $\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0001(6)$ M. Antonelli et al

Look for new physics effects in the comparison of $|V_{us}|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed K_{l3}

$$R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+^{K\pi}(0)}\right) \times \text{experim. data on } K_{\mu 2}\pi_{\mu 2} \text{ and } K_{l3}$$

* In the SM $R_{\mu 23} = 1$. Not true for some BSM theories (for example, charged Higgs)

* Current value $R_{\mu 23} = 0.999(7)$, limited by lattice inputs.

2. Strategy: semileptonic decays with HISQ quarks

Semileptonic decays at $q^2 = 0$: Extraction of CKM matrix elements

$$K \to \pi l \nu \quad \rightarrow \quad |V_{us}|$$
$$D \to \pi(K) l \nu \quad \rightarrow \quad |V_{cd(cs)}|$$

* Analysis round 1: $K \rightarrow \pi l \nu$ analysis on the $N_f = 2 + 1$ Asqtad bf MILC ensembles (HISQ on Asqtad calculation): Nearly finished.

$$K \to \pi l \nu \to |V_{us}|$$

- # D semileptonic decays at $q^2 \neq 0$: Comparing the shape with experiment
 - * Test lattice QCD.
 - * Global fit in SM + experiment $\rightarrow |V_{cs(cd)}|$ and $f_+^{D\rightarrow K(\pi)}(q^2)$

3. Form factors at $q^2 = 0$

3.1. Methodology

For the extraction of $|V_{f_1f_2}|$ we need $f_+^{P_1 \to P_2}(0)$ for mesons P_1 and P_2 .

$$\langle P_2 | V^{\mu} | P_1 \rangle = f_+^{P_1 P_2}(q^2) \left[p_{P_1}^{\mu} + p_{P_2}^{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu} \right] + f_0^{P_1 P_2}(q^2) \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu}$$

3.1. Methodology

For the extraction of $|V_{f_1f_2}|$ we need $f_+^{P_1 \to P_2}(0)$ for mesons P_1 and P_2 .

$$\langle P_2 | V^{\mu} | P_1 \rangle = f_+^{P_1 P_2}(q^2) \left[p_{P_1}^{\mu} + p_{P_2}^{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu} \right] + f_0^{P_1 P_2}(q^2) \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu}$$

We use **HPQCD** method for D semileptonic decays

* In the continuum, the Ward identity $(S = \bar{a}b)$

$$q^{\mu}\langle P_2|V_{\mu}^{cont.}|P_1\rangle = (m_b - m_a)\langle P_2|S^{cont}|P_1\rangle$$

relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P_2 | V_{\mu}^{lat.} | P_1 \rangle Z = (m_b - m_a) \langle P_2 | S^{lat.} | P_1 \rangle$$

3.1. Methodology

For the extraction of $|V_{f_1f_2}|$ we need $f_+^{P_1 \to P_2}(0)$ for mesons P_1 and P_2 .

$$\langle P_2 | V^{\mu} | P_1 \rangle = f_+^{P_1 P_2}(q^2) \left[p_{P_1}^{\mu} + p_{P_2}^{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu} \right] + f_0^{P_1 P_2}(q^2) \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu}$$

We use **HPQCD** method for D semileptonic decays

* In the continuum, the Ward identity $(S = \bar{a}b)$

$$q^{\mu}\langle P_2|V_{\mu}^{cont.}|P_1\rangle = (m_b - m_a)\langle P_2|S^{cont}|P_1\rangle$$

relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P_2 | V_{\mu}^{lat.} | P_1 \rangle Z = (m_b - m_a) \langle P_2 | S^{lat.} | P_1 \rangle$$

 \rightarrow replace the V_{μ} with an S current in the 3-point function

$$f_0^{P_1P_2}(q^2) = \frac{m_b - m_a}{m_{P_1}^2 - m_{P_2}^2} \langle P_2 | S | P_1 \rangle_{q^2} \Longrightarrow \qquad f_+^{P_1P_2}(0) = f_0^{P_1P_2}(0) = \frac{m_b - m_a}{m_{P_1}^2 - m_{P_2}^2} \langle S \rangle_{q^2 = 0}$$

3.2. Simulations setup

* Color random wall sources \rightarrow Reduction of statistical errors by a factor of 2-3

Quantities inside [] correspond to $K\,\rightarrow\,\pi \, l\,\nu$

3.2. Simulations setup

Quantities inside [] correspond to $K\,\rightarrow\,\pi \, l\,\nu$

* Color random wall sources \rightarrow Reduction of statistical errors by a factor of 2-3

* Twisted boundary conditions \rightarrow allow generating correlation functions with non-zero external momentum such that $q^2 \simeq 0$ (or any other q^2)

** $K \to \pi l \nu$: momentum injected on the K $(\vec{\theta}_1 \neq 0)$ or π $(\vec{\theta}_2 \neq 0)$

Example:
$$q^2 = 0$$
 $\vec{\theta}_1(q^2 = 0) = \sqrt{\left(\frac{m_K^2 + m_\pi^2}{2m_\pi}\right)^2 - m_K^2 \frac{L}{\pi}} \implies \vec{p}_K = \vec{\theta}_1 \frac{\pi}{L}$
 $\vec{\theta}_2(q^2 = 0) = \sqrt{\left(\frac{m_K^2 + m_\pi^2}{2m_K}\right)^2 - m_\pi^2 \frac{L}{\pi}} \implies \vec{p}_\pi = \vec{\theta}_2 \frac{\pi}{L}$

** $D \to K(\pi) l \nu$: D-meson always at rest. Momentum injected on the $K(\pi)$ $(\vec{\theta}_0 = \vec{\theta}_1 = 0, \ \vec{\theta}_2 \neq 0)$

3.3. Analysis on the Asqtad $N_f = 2 + 1$ MILC ensembles

3.3.1 Simulation details: Lattice actions

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

RMP 82, 1349 (2010) [0903.3598] and references therein

* Asqtad: Tree-level order a^2 effects removed \rightarrow leading errors are $\mathcal{O}(\alpha_s a^2), \mathcal{O}(a^4)$

* One-loop Symanzik-improved gauge action

3.3.1 Simulation details: Lattice actions

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

RMP 82, 1349 (2010) [0903.3598] and references therein

* Asqtad: Tree-level order a^2 effects removed \rightarrow leading errors are $\mathcal{O}(\alpha_s a^2), \mathcal{O}(a^4)$

* One-loop Symanzik-improved gauge action

Valence quarks: HISQ action.

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

Highly reduce $\mathcal{O}(a^2 \alpha_s)$ and $\mathcal{O}((am_Q)^4)$ errors compared to Asqtad \rightarrow more continuum-like behavior

3.3.1 Simulation details: parameters

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

pprox a (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T
0.12	0.4	$20^3 \times 64$	2052	4	5
	0.2	$20^3 \times 64$	2243	4	8
	0.14	$20^3 \times 64$	2109	4	5
	0.1	$24^3 \times 64$	2098	8	5
0.09	0.4	$28^3 \times 96$	1996	4	5
	0.2	$28^3 \times 96$	1946	4	5

with N_T is the number of source-sink separations (need even and odd values of T to eliminate contamination with wrong-spin states (lattice artifacts)).

3.3.1 Simulation details: parameters

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

$\approx a$ (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T
0.12	0.4	$20^3 \times 64$	2052	4	5
	0.2	$20^3 \times 64$	2243	4	8
	0.14	$20^3 \times 64$	2109	4	5
	0.1	$24^3 \times 64$	2098	8	5
0.09	0.4	$28^3 \times 96$	1996	4	5
	0.2	$28^3 \times 96$	1946	4	5

with N_T is the number of source-sink separations (need even and odd values of T to eliminate contamination with wrong-spin states (lattice artifacts)).

* Strange valence quark masses are tuned to their physical values

C.T.H. Davies et al, PRD81(2010)

3.3.1 Simulation details: parameters

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

$\approx a$ (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T
0.12	0.4	$20^3 \times 64$	2052	4	5
	0.2	$20^3 \times 64$	2243	4	8
	0.14	$20^3 \times 64$	2109	4	5
	0.1	$24^3 \times 64$	2098	8	5
0.09	0.4	$28^3 \times 96$	1996	4	5
	0.2	$28^3 imes 96$	1946	4	5

with N_T is the number of source-sink separations (need even and odd values of T to eliminate contamination with wrong-spin states (lattice artifacts)).

* Strange valence quark masses are tuned to their physical values

C.T.H. Davies et al, PRD81(2010)

* Light valence quark masses:
$$\frac{m_l^{val}(HISQ)}{m_s^{phys}(HISQ)} = \frac{m_l^{sea}(Asqtad)}{m_s^{phys}(Asqtad)}$$

3.3.2 Fitting and statistical errors

We want to extract the value of the form factor $f_0(q^2)$ from the relation

$$f_0(q^2) = \frac{m_s - m_q}{m_K^2 - m_\pi^2} \langle S \rangle_{q^2 = 0} = \frac{1}{2} A_{00}(q^2) \sqrt{2E_\pi^0 2E_K^0} \frac{m_s - m_q}{m_K^2 - m_\pi^2}$$

3.3.2 Fitting and statistical errors

We want to extract the value of the form factor $f_0(q^2)$ from the relation

$$f_0(q^2) = \frac{m_s - m_q}{m_K^2 - m_\pi^2} \langle S \rangle_{q^2 = 0} = \frac{1}{2} A_{00}(q^2) \sqrt{2E_\pi^0 2E_K^0} \frac{m_s - m_q}{m_K^2 - m_\pi^2}$$

Strategy: Combined fits of two-point functions with and without external momentum (4) + three-point functions with $q^2 = 0$ (2):

$$C_{3pt}^{K \to \pi}(t, T; \vec{p}_{\pi}, \vec{p}_{K}) = \sum_{m,n=0}^{N_{exp}^{3pt}} (-1)^{mt} (-1)^{n(T-t)} A_{mn}(q^{2}) \sqrt{Z_{m}^{\pi, \vec{p}_{\pi}} Z_{n}^{K, \vec{p}_{K}}} \times \left(e^{-E_{\pi}^{m}t - E_{\pi}^{m}(L_{t} - t)} \right) \left(e^{-E_{K}^{n}(T-t) - E_{K}^{n}(T-L_{t} + t)} \right);$$

$$C_{2pt}^{P}(t;\vec{p}_{P}) = \sum_{m}^{N_{exp}^{2pt}} (-1)^{mt} \sqrt{Z_{m}^{P},\vec{p}_{P}} e^{-E_{P}^{m}t - E_{P}^{m}(L_{t}-t)} \quad P = \pi, K$$

* Use several (3 or 4) values of T (even and odd) to fit out oscillatory terms.

3.3.2 Fitting and statistical errors

Statistical errors 0.1 - 0.15%.

Find it very difficult to make changes in the fitting procedure that change the fit results outside the one statistical sigma range

* Choice of source-sink separation T's, number of exponentials, time ranges, fitting function.

The form factor $f_+(0)$ can be written in χ PT as

 $f_{+}(0) = 1 + f_{2} + f_{4} + f_{6} + \dots = 1 + f_{2} + \Delta f$

$f_+(0)$ goes to 1 in the SU(3) limit due to vector current conservation

Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $(m_K^2 - m_{\pi}^2)$ and f_2 is completely fixed in terms of experimental quantities.

The form factor $f_+(0)$ can be written in χ PT as

 $f_{+}(0) = 1 + f_{2} + f_{4} + f_{6} + \dots = 1 + f_{2} + \Delta f$

$f_+(0)$ goes to 1 in the SU(3) limit due to vector current conservation

- # Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $(m_K^2 - m_{\pi}^2)$ and f_2 is completely fixed in terms of experimental quantities.
 - * At finite lattice spacing systematic errors can enter due to violations of the dispersion relation needed to derive

$$f_{+}(0) = f_{0}(0) = \frac{m_{s} - m_{q}}{m_{K}^{2} - m_{\pi}^{2}} \langle S \rangle_{q^{2} = 0}$$

Dispersion relation violations in our data are $\leq 0.15\%$.

Fitting strategy I:

One-loop (NLO) partially quenched Staggered χ PT +

two-loop (NNLO) continuum χ PT by Bijnens & Talavera, arXiv:0303103.

$$\begin{split} f_{+}^{K\pi}(0) &= 1 + f_{2}^{PQ\,,stag.}(a) + C_{a} \left(\frac{a}{r_{1}}\right)^{2} + f_{4}^{cont.}(\log s) + f_{4}^{cont.}(L_{i}'s) \\ &+ r_{1}^{4}(m_{\pi}^{2} - m_{K}^{2})^{2} \left[C_{6}'^{(1)} + C_{6}^{a}\left(\frac{a}{r_{1}}\right)^{2}\right] \end{split}$$

where $C_6^{\prime(1)} \propto C_{12} + C_{34} - L_5^2$.

 L_5 is an $\mathcal{O}(p^4)$ LEC and $C_{12,34}$ are $\mathcal{O}(p^6)$ LECs

* Staggered χ PT: logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking a^2 effects \rightarrow remove the dominant light discretization errors

Fitting strategy II:

One-loop (NLO) partially quenched Staggered χ PT + analytical parametrization of NNLO terms.

$$f_{+}^{K\pi}(0) = 1 + f_{2}^{PQ,stagg.}(a) + C_{a} \left(\frac{a}{r_{1}}\right)^{2} + r_{1}^{4} \left(m_{\pi}^{2} - m_{K}^{2}\right)^{2}$$
$$\times \left[\frac{C_{6}^{(1)} \left(r_{1}m_{\pi}\right)^{2} + C_{6}^{(2)} \left(r_{1}m_{K}\right)^{2} + C_{6}^{a} \left(\frac{a}{r_{1}}\right)^{2}\right]$$

* We also add terms of order $(r_1m_\pi)^4$, $(r_1m_\pi)^2 log((r_1m_\pi)^2)$.

Results: some examples

- # Estimate errors using 500 bootstrap ensembles.
- # $S\chi PT$ expressions used are not complete.
 - Not all hairpin terms are included in the fitting function (need to be checked).
 - * Mixed-action pion mass splittings are approximated by

$$\Delta_{mix} = (\Delta_{sea}(Asqtad) + \Delta_{valence}(HISQ))/2$$

****** Using the correct splittings does not change the central values by more than 0.1%.

Results: some examples

Example fitting strategy I

Example fitting strategy II

Priors central values for $L'_i s$ from Bijnens and Jemos, 1103.5945, widths $10 \times$ larger than the erros quoted there

$$1 + f_2^{PQ,stagg.}(a) + C_a \left(\frac{a}{r_1}\right)^2 + (m_{\pi}^2 - m_K^2)^2 \left[C_6^{(1)}(r_1m_{\pi})^2 + C_6^{(2)}(r_1m_K)^2\right]$$

Different choices of fitting function tested within strategies I and II.

- # Main features of the fits.
 - * Different results (fitting functions, fitting strategies, ...) agree within one statistical σ .
 - * Statistical (bootstrap) errors around 0.2 0.3%.
 - * Violations of AG theorem are $\sim 0.32 0.15\%$ for $a \approx 0.12$ fm and $\sim 0.15 0.1\%$ for $a \approx 0.09$ fm.

- # Main features of the fits.
 - * Different results (fitting functions, fitting strategies, ...) agree within one statistical σ .
 - * Statistical (bootstrap) errors around 0.2 0.3%.
 - * Violations of AG theorem are $\sim 0.32 0.15\%$ for $a \approx 0.12$ fm and $\sim 0.15 0.1\%$ for $a \approx 0.09$ fm.

Final strategy for chiral and continuum extrapolation not decided yet. # Need to check $S\chi$ PT and clarify the origin of a^2 effects.

3.3.4 Expected error budget

* Statistical+extrapolation: 0.2-0.3% * Chiral extrapolation/fitting function: 0.1%0.15-0.2% * Discretization errors: ** Spread of results when adding a^2 , $a^2 \alpha_s$, a^4 , $(m_K - m_\pi^2)^2 a^2$ $(m_K - m_\pi^2)^2 a^2$, $E_P^2 a^2$ and/or $p_P^2 a^2$ terms in the fitting function ** Deviation from continuum dispersion relation $\leq 0.15\%$ * Mistuning of m_s on the sea: 0.2% * Finite volume effects: ? Explicit check on a larger volume ($a = 0.12 \ fm$, $am_l = 0.2am_s$, $V = 28^3 \times 64$) **TOTAL:** 0.35-0.5% **RBC/UKQCD**, EPJC69(2010): $f_{+}(0) = 0.9599(34)(^{+31}_{-43})(14)$ (0.5 - 0.6%)

ETMC, PRD80(2009): $f_+(0) = 0.9560(84)$ (0.9%)

3.4. HISQ valence quarks on HISQ $N_f = 2 + 1 + 1$ MILC ensembles

3.4.1 Simulation details

Same set-up as for the Asqtad on HISQ calculation.

Data generated for $K \to \pi l \nu$ and $D \to K(\pi) l \nu$ at $q^2 = 0$ (and $q^2 = q_{max}^2$).

Planned runs

400 Completed In production $* \sim 1000$ configurations per 4 time sources 350 8 time sources 0 ensemble. 300 M²²⁰ M² * 4 or 8 time sources. 0 200 * 4-5 source-sink separations. 150 0 0 100^L 0,1 0.15 0.05 0,2 a[fm]

$$am_l^{valence} = am_l^{sea}$$
, $am_s^{valence} = am_s^{physical}$, and
 $am_c^{valence} = am_c^{sea}$, $\approx am_c^{phys}$.

3.4.2 First preliminary results

Improvements

- Reduction of discretization errors from the sea .
- * Physical quark masses.
- * Incorporates effects of m_c^{sea} .
- * Better tuning of sea quark masses (especially am_s).

3.4.2 First preliminary results

Good fulfillment of continuum dispersion relation.

Improvements

- * Reduction of discretization errors from the sea .
- * Physical quark masses.
- * Incorporates effects of m_c^{sea} .
- * Better tuning of sea quark masses (especially am_s).

3.4.2 First preliminary results

Good fulfillment of continuum dispersion relation.

Improvements

- * Reduction of discretization errors from the sea .
- * Physical quark masses.
- * Incorporates effects of m_c^{sea} .
- * Better tuning of sea quark masses (especially am_s).

Dispersion relation

- * Statistical errors are larger for smaller quark masses and the external momentum ap needed for $q^2 = 0$ is larger.
 - → Need data at unphysical light masses to reduce statistical and discretization errors

Semileptonic decays at $q^2 = 0$: $N_f = 2 + 1 + 1$

$D \rightarrow K(\pi) l \nu$ Still working on the (more challenging) fits

4. Conclusions

- # Calculation of $f_{+}^{K\pi}(q^2 = 0)$ with HISQ valence quarks on the $N_f = 2 + 1$ Asqtad MILC configurations nearly complete.
 - * We expect errors $\sim 0.35 0.5\%$.
 - * Dominant sources of uncertainty are chiral extrapolation, discretization effects, and mistuning of m_s on the sea.
- # We have started a broader calculation of $K \to \pi l \nu$ and $D \to K(\pi) l \nu$ form factors at $q^2 = 0$ on the $N_f = 2 + 1 + 1$ HISQ MILC config.
 - * Include physical quark mass results → reduction of chiral extrapolation uncertainty.
 - * Better tuning of sea quark masses \rightarrow reduction of m_s uncertainty.
 - * Preliminary results for $f_{+}^{K\pi}(0)$ indicates small discretization effects.

$f_+^{DK(\pi)}(0)$ in progress.

$f_+^{DK}(q^2)$ and $f_+^{D\pi}(q^2)$ with $q^2 \neq 0$ in the near future.

2.4.1 χ PT: analytic NNLO

χ^2/dof	p	C_a	$C_{6}^{(1)}$	$C_{6}^{(2)}$	C_6^a	$f_{+}(0)$
0.78	0.59	-0.011(11)	0.033(27)	-0.024(6)	0	0.9692(17)
0.91	0.48	0	0.014(21)	-0.024(11)	-0.03(14)	0.9689(28)
0.67	0.67	-0.022(19)	0.065(48)	-0.033(13)	0.19(23)	0.9669(31)
prio	rs	0 ± 1	$0\pm s^2$	$0\pm s^2$	$0\pm s^2$	

where $s = 1/(8\pi^2 (f_{\pi}r_1)^2 \simeq 0.6$.

$$f_{+}^{K\pi}(0) = 1 + f_{2}^{PQ,stagg.}(a) + C_{a} \left(\frac{a}{r_{1}}\right)^{2} + r_{1}^{4} \left(m_{\pi}^{2} - m_{K}^{2}\right)^{2}$$
$$\times \left[\frac{C_{6}^{(1)}(r_{1}m_{\pi})^{2} + C_{6}^{(2)}(r_{1}m_{K})^{2} + C_{6}^{a} \left(\frac{a}{r_{1}}\right)^{2}\right]$$

2.4.2. χ PT: continuum NNLO

Fit	C_a	C_6^a	χ^2/dof	p	$f_{+}(0)$	$(C_{12} + C_{34}) \times 10^6$
Ι	-0.015(8)	0	0.91	0.48	0.9692(17)	3.9(3)
II	-0.015(8)	0	0.9	0.5	0.9693(17)	3.9(3)
III	-0.009(11)	0	0.75	0.61	0.9701(19)	4.0(4)
IV	-0.007(11)	0	0.76	0.6	0.9699(19)	5.3(4)
III	0	-0.02(14)	0.86	0.53	0.9700(33)	4.4(4)
I	-0.017(8)	0.15(13)	0.7	0.65	0.9671(24)	4.3(4)
III	-0.016(16)	0.13(21)	0.69	0.66	0.9677(33)	4.0(4)

$$f_{+}^{K\pi}(0) = 1 + f_{2}^{PQ,stag.}(a) + C_{a} \left(\frac{a}{r_{1}}\right)^{2} + f_{4}^{cont.}(\log s) + f_{4}^{cont.}(\frac{L'_{i}s}{L'_{i}s}) + r_{1}^{4}(m_{\pi}^{2} - m_{K}^{2})^{2} \left[C_{6}^{\prime(1)} + C_{6}^{a}\left(\frac{a}{r_{1}}\right)^{2}\right]$$

where $C_6^{\prime(1)} \propto C_{12} + C_{34} - L_5^2$.

2.4.2. χ PT: continuum NNLO

- I. Fix $L'_i s$ to Bijnens' values.
- II. Free $L'_i s$ with priors and widths equal to Bijnens' values.
- III. Free $L'_i s$ with priors equal to Bijnens' values and widths $10 \times$ larger.
- IV. Free L'_is , same as III for L_{1-3} and use MILC determination in PoS LAT2009:079(2009) for the prior/width(twice de error) of $L_{4,5}$.