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Introduction

The magnetic moment and magnetic polarisability are important
fundamental properties which describe the response of a system to an
applied static magnetic field.

These can be calculated on the lattice through the use of the
background field method.
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a shift in the energy.
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Apply a uniform magnetic field over the whole lattice which produces
a shift in the energy.
E(0) — E'(B)

Small field expansion of the energy for a particle in a constant
magnetic field:

B .4
E(B):M+%+ﬁ-Bf§BBQ+O(BS)

Magnetic moment p and magnetic polarisability 3.
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Background Field Method

Consider the continuum case:
D, =0,+9G,+qA,
Lattice case:

Uu(x) = Uy (@) = Uu(@)UP) (2)

The factor modifying the links has the form:

U;(LB) (1,) — eian“(w).
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Background Field Method

Use Maxwell’s equations to choose values for A, that give a constant
magnetic field in the z-direction

—N,By forx =N, —1.
A, =
0 elsewhere

Requirement at the x = N, — 1, y = N, — 1 boundary:

2mn

Ba® =
170 =N,

Which acts as a quantisation condition on the field.
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spacing a = 0.0907 fm.
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Simulation Details

323 x 64 lattice, 241 flavour dynamical-QCD gauge field
configurations, provided by the PACS-CS collaboration as part of the
International Lattice Data Grid (ILDG) with 8 = 1.9, physical lattice
spacing a = 0.0907 fm.

Correlation functions calculated using the standard y; interpolating
field
x1 = (uF'Cysd)u

with 100 sweeps of Gaussian smearing on the source.

My Configurations
622 MeV 360
512 MeV 360
388 MeV 360
282 MeV 360
151 MeV | not yet calculated




Simulation Details

Field strengths:

qBa? = 4+0.0061, —0.0123, +-0.0184, +0.0245, —0.0368 — 0.0491.

Corresponding to n = 1, -2, 3, 4, -6, -8 in the quantisation condition.



Simulation Details

Field strengths:

qBa? = 4+0.0061, —0.0123, +-0.0184, +0.0245, —0.0368 — 0.0491.

Corresponding to n = 1, -2, 3, 4, -6, -8 in the quantisation condition.

Calculate correlation functions with ¢4(By,) and g, (B_2,) for a
baryon in a field of strength —3B,,.
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Magnetic Moment
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Magnetic Moment

eBl . z Am ., 3
E=M+_—— -B—- —pB°+0(B
+2M+M zﬁ +0(B°)

Taking the difference of spin-up and spin-down:

1 -
JEr—E)=a-B

In terms of correlation functions:

anm) -5 (n(Eoreiss)) fir
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Spin Diff Mass Shift

Spin Diff Mass Shift
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Negative Parity Neutron

Lowest lying negative parity nucleon state n*(1/2—)

Correlation function can be written as
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Negative Parity Neutron

Lowest lying negative parity nucleon state n*(1/2—)

Correlation function can be written as

v -pp+ + Mp+
Gltr) = Do hpedpee S TR

_ —~ _ 4+ Mn-
Ar- Ap_ —Eg_t Y PB B
Z B-AB-€ 2B,

After setting p'= 0 to give Eg+ = Mp+ the negative parity states are
projected into the 3,3 and 4,4 components of the Dirac matrix via

1
Iy = 5(1i’70)



Negative Parity Neutron
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Negative Parity Proton
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Using interpolating field xo = (u? Cd)ysu:
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Magnetic Polarisability

elBl L 5 4w, 3
E=m+220 7. B-""3B>+ OB
mA+oap TH 2/3 +0(B”)

Taking the average of spin-up and spin-down:

0-|B 4
((Br —ma) + (B, —my) = 2 g
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Magnetic Polarisability

|B| 2 3
E=m+ -— B B
+2N+ ,8 +0(BY

Taking the average of spin-up and spin-down:

0-|B 4
((ET_mT)+(Ei—m¢)) = ﬁ_?ﬂ-ﬂ32

N

In terms of correlation functions:

AE(B) = % (ln (GT(B’t) Gi(B”?))fﬁ
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Spin Av. Eff Mass
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The Origin of the Background Field

Does the location of the origin of the background field matter?
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The Origin of the Background Field

Does the location of the origin of the background field matter?

B (B B
UB (z) - U P (z) =UP(z — o)
The physical value of the field B is not affected.

» Errors and noise make it hard to tell if there is a meaningful
change in the overlaps.

» Use tree level calculations as a check.

» Done by setting gauge field to 1 everywhere which turns off QCD
interactions.
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The Origin of the Background Field

» Only the overlap is affected, not the ground state asymptote
value.

» No effect is seen at all for a point source.

» Ideal ground state approach is seen when the origin of the quark
props is aligned with the origin of the background field.
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Work to be completed

» Choosing a smearing prescription for extracting good
polarisability results.

» Calculation of propagators for the lightest quark mass and
subsequent results at that mass.

» Correlation matrix analysis to better isolate states, in particular
the negative parity states.



	Background Field Method
	Introduction
	Formulation
	Constant Field

	Simulation Details
	Neutron Magnetic Moment
	Isolating the moment term
	Effective mass
	Magnetic moment plot

	Neutron Magnetic Polarisability
	Neutron
	Effective mass
	Conclusion


