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Introduction

The magnetic moment and magnetic polarisability are important
fundamental properties which describe the response of a system to an
applied static magnetic field.

These can be calculated on the lattice through the use of the
background field method.



Background Field Method

Apply a uniform magnetic field over the whole lattice which produces
a shift in the energy.

E(0)→ E′(B)

Small field expansion of the energy for a particle in a constant
magnetic field:

E(B) = M +
e|B|
2M

+ ~µ · ~B − 4π

2
βB2 +O(B3)

Magnetic moment µ and magnetic polarisability β.
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Background Field Method

Consider the continuum case:

Dµ = ∂µ + gGµ + qAµ

Lattice case:
Uµ(x)→ U ′µ(x) = Uµ(x)U (B)

µ (x)

The factor modifying the links has the form:

U (B)
µ (x) = eiaqAµ(x).
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Background Field Method

Use Maxwell’s equations to choose values for Aµ that give a constant
magnetic field in the z-direction

Ay = Bx

Ax =

{
−NxBy for x = Nx − 1.

0 elsewhere

Requirement at the x = Nx − 1, y = Ny − 1 boundary:

qBa2 =
2πn

NxNy

Which acts as a quantisation condition on the field.
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Simulation Details

323 × 64 lattice, 2+1 flavour dynamical-QCD gauge field
configurations, provided by the PACS-CS collaboration as part of the
International Lattice Data Grid (ILDG) with β = 1.9, physical lattice
spacing a = 0.0907 fm.

Correlation functions calculated using the standard χ1 interpolating
field

χ1 = (uTCγ5d)u

with 100 sweeps of Gaussian smearing on the source.

mπ Configurations
622 MeV 360
512 MeV 360
388 MeV 360
282 MeV 360
151 MeV not yet calculated
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Simulation Details

Field strengths:

qBa2 = +0.0061,−0.0123,+0.0184,+0.0245,−0.0368− 0.0491.

Corresponding to n = 1, -2, 3, 4, -6, -8 in the quantisation condition.

Calculate correlation functions with qd(Bn) and qu(B−2n) for a
baryon in a field of strength −3Bn.
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Magnetic Moment

E = M +
e|B|
2M

+ ~µ · ~B − 4π

2
βB2 +O(B3)

Taking the difference of spin-up and spin-down:

1

2
(E↑ − E↓) = ~µ · ~B

In terms of correlation functions:

∆E(B) =
1

2

(
ln

(
G↑(B, t)

G↑(0, t)

G↓(0, t)

G↓(B, t)

))
fit
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Negative Parity Neutron

Lowest lying negative parity nucleon state n∗(1/2−)

Correlation function can be written as

G(t, ~p) =
∑
B+

λB+ λ̄B+e−EB+ t
γ · pB+ +MB+

2EB+

−
∑
B−

λB− λ̄B−e
−EB− t

−γ · pB− +MB−

2EB−

After setting ~p = 0 to give EB± = MB± the negative parity states are
projected into the 3,3 and 4,4 components of the Dirac matrix via

Γ± =
1

2
(1± γ0)
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Negative Parity Neutron



Negative Parity Proton



Using interpolating field χ2 = (uTCd)γ5u:





Magnetic Polarisability

E = m+
e|B|
2M

+ ~µ · ~B − 4π

2
βB2 +O(B3)

Taking the average of spin-up and spin-down:
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2
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0 · |B|
2M

− 4π

2
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In terms of correlation functions:

∆E(B) =
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The Origin of the Background Field

Does the location of the origin of the background field matter?

U (B)
µ (x)→ U

′(B)
µ (x) = U (B)

µ (x− x0)

The physical value of the field B is not affected.

I Errors and noise make it hard to tell if there is a meaningful
change in the overlaps.

I Use tree level calculations as a check.

I Done by setting gauge field to 1 everywhere which turns off QCD
interactions.
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The Origin of the Background Field

I Only the overlap is affected, not the ground state asymptote
value.

I No effect is seen at all for a point source.

I Ideal ground state approach is seen when the origin of the quark
props is aligned with the origin of the background field.







Work to be completed

I Choosing a smearing prescription for extracting good
polarisability results.

I Calculation of propagators for the lightest quark mass and
subsequent results at that mass.

I Correlation matrix analysis to better isolate states, in particular
the negative parity states.
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