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Introduction and Motivation

The finite volume effects for kaon decay were worked out by Martin
Lüscher and Laurent Lellouch over a decade ago.1234

More recently, lattice simulations have made significant progress towards a
first principle determination of these weak decay amplitudes.56

1Luescher, M. Commun. Math. Phys. 104, 177 (1986).
2Luescher, M. Commun. Math. Phys. 105, 153–188 (1986).
3Luescher, M. Nucl. Phys. B354, 531–578 (1991).
4Lellouch, L. & Luscher, M. Commun.Math.Phys. 219, 31–44 (2001).
5Blum, T. et al. Phys.Rev. D84, 114503 (2011).
6Blum, T. et al. arXiv:1111.1699 [hep-lat] (2011).
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Introduction and Motivation

What about heavier mesons?
For example, LHCb recently reported CP-violation in the difference of
CP-asymmetries of7

D0 → π−π+ and D0 → K−K+

Is this consistent with the Standard Model?

Finite volume effects for these decays are not yet worked out. I present
here a first step towards controlling these effects.

7Aaij, R. et al. Phys. Rev. Lett. 108, 111602 (2012).
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Set-up
Here finite volume means...

finite, cubic spatial volume (extent L)

periodic boundary conditions

time direction infinite.

Assume L large enough to ignore exponentially suppressed corrections.

Assume continuum field theory throughout.

Allow non-zero total momentum in finite volume frame...

total energy E

total momentum ~P

(
~P =

2π~nP
L

~nP ∈ Z3

)

CM frame energy E ∗

(
E ∗ =

√
E 2 − ~P2

)
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Set-up

Arbitrary number (N) of open channels...

Restrict, however, to two-particle channels with scalar particles.

Allow identical or non-identical particles.

Allow non-degenerate masses.

For example N = 3 with ππ , KK and ηη.

Define q∗i as the magnitude of CM frame momentum for the ith channel.
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Statement of the problem

Infinite volume theory described by 2→ 2 scattering amplitudes

iMjk

where
k = 1, · · · ,N is the in-state
j = 1, · · · ,N is the out-state.

Want to relate M to the discrete spectrum of the finite volume theory

E ∗k for k = 1, 2, 3, · · ·

at a given {L,~nP}.

Found the result by generalizing work of Kim, Sachrajda and Sharpe.8

8Kim, C. et al. Nucl.Phys. B727, 218–243 (2005).
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Definition of F

To state the result define Fij ;`1,m1;`2,m2

Fij ;`1,m1;`2,m2 ≡ δijηi
[

Req∗i
8πE ∗

δ`1`2δm1m2+

i

2πEL

∑
`,m

x−`i Z
P
`m[1; x2

i ]

∫
dΩY ∗`1,m1

Y ∗`,mY`2,m2

]

where xi ≡ q∗i L/(2π) and ZP
`m is a generalization of the zeta-function.

η = 1/2 for identical particles and 1 for non-identical.

Observe that F is...

diagonal in channel space

not diagonal in angular momentum space (rotational symmetry
broken).
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Definition of M

We also define the partial wave scattering amplitude Mij ;`1,m1;`2,m2

Mij(k̂
∗, k̂ ′∗) ≡ 4πMij ;`1,m1;`2,m2Y`1,m1(k̂∗)Y ∗`2,m2

(k̂
′∗)

In contrast to F , M is...

not diagonal in channel space

diagonal in angular momentum space.

Mij ;`1,m1;`2,m2 =M`1,m1

ij δ`1`2δm1m2
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Generalized Lüscher method

We find that the spectrum

E ∗k for k = 1, 2, 3, · · ·

at a particular {L,~nP} is given by solutions to

det(F−1 + iM) = 0 .

Agrees with work by Briceno and Davoudi (submitted simultaneously).9

Earlier work found equivalent result for limiting case of only s-wave
scattering and ~P = 0.10

9Briceno, R. A. & Davoudi, Z. arXiv:1204.1110 [hep-lat] (2012).
10Bernard, V. et al. JHEP 1101, 019 (2011).
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Generalized Lüscher method

det(F−1 + iM) = 0 .

Result holds for

any number of strongly coupled channels (but only two-particle, scalar
channels)

any total momentum ~P

arbitrary values of the different partial wave amplitudes Mij ;`1,m1;`2,m2

F is not diagonal in angular momentum. However if

M`>`max ,m
ij = 0

then one can replace F with finite version.
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Two channel, s-wave limit

From now on assume

`max = 0 (only keep s-wave)

N=2 (only two open channels)

In particular consider toy model of pions and kaons with Mπ < MK < 2Mπ.

Assume that 2MK < E ∗ < 4Mπ, so the only open channels are

1 : ππ (identical) and 2 : KK (nonidentical) .

We find

∆M(L,E ∗, ~P) ≡ det

[(
(F s

1 )−1 0
0 (F s

2 )−1

)
+ i

(
Ms

1→1 Ms
2→1

Ms
1→2 Ms

2→2

)]
= 0
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Curves from UChPT

∆M(L,E ∗, ~P = 0) = 0

Curves predicted by unitarized chiral perturbation theory (UChPT)
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S-matrix

Next note i

(
M

)
=

(
Q
)[(

S
)
− 1

](
Q
)

where

(
Q
)

=
√

4πE ∗
[

(q∗1η1)−1/2 0

0 (q∗2η2)−1/2

]
,

and

(
S
)

is a dimensionless, 2× 2, symmetric, unitary matrix.

Determined by 3 real parameters
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Extraction of amplitude

∆M(L,E ∗, ~P = 0) = 0

Extraction of the scattering amplitude at a given energy E ∗
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Extraction of amplitude

∆M(L,E ∗, ~P = 0) = 0

Extraction of the scattering amplitude at a given energy E ∗
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Add in another particle

So far we have given the relation between M and E ∗k for a toy theory with
two channels

1 : ππ (identical) and 2 : KK (nonidentical) ,

Now consider an additional scalar particle in the toy model.

Call it the D-meson and take

2Mπ < 2MK < MD < 4Mπ .

This is a bad approximation for the actual D-meson.

M. T. Hansen (UW) Coupled Channel Generalization of LL 19 / 29



Statement of Problem

Define HW as a weak hamiltonian density which couples D to ππ and KK .

We want a method to determine infinite volume weak decay elements

AD→ππ ≡ 〈ππ|HW |D〉 and AD→KK ≡ 〈KK |HW |D〉 ,

from finite volume quantities.
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Tuning degeneracy

Identify {L,~nP} that put MD in the spectrum.
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Generalized Lellouch-Lüscher formula

We want a formula that takes as input M and MD→n and gives from this

AD→ππ ≡ 〈ππ|HW |D〉 and AD→KK ≡ 〈KK |HW |D〉 .

To derive this incorporate the weak interaction into the hamiltonian

H(x) −→ H(x) + λHW (x) ,

where λ is a real free parameter.

M. T. Hansen (UW) Coupled Channel Generalization of LL 22 / 29



Generalized Lellouch-Lüscher formula

The new hamiltonian
H(x) + λHW (x)

changes the secular equation to

∆M+∆M(L,E ∗, ~P) = 0 .

M. T. Hansen (UW) Coupled Channel Generalization of LL 23 / 29



Generalized Lellouch-Lüscher formula

The change ∆M is related to the infinite volume decay amplitudes
through terms proportional to

Aππ→DAD→ππ AKK→DAD→ππ

Aππ→DAD→KK AKK→DAD→KK

= Ak→Di∆Mjk AD→j
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Generalized Lellouch-Lüscher formula

In addition if E ∗ = MD is in the spectrum of the unperturbed hamiltonian,
then

E ∗ = MD ± λV |MD→n|

is the shifted level in the spectrum of

H(x) + λHW (x) .
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Generalized Lellouch-Lüscher formula

We generate three new equations

∆M(L1,MD , ~P1) = 0

∆M(L2,MD , ~P2) = 0 −→

∆M(L3,MD , ~P3) = 0

∆M+∆M(L1,MD ± λ∆E ∗, ~P1) = 0

∆M+∆M(L2,MD ± λ∆E ∗, ~P2) = 0

∆M+∆M(L3,MD ± λ∆E ∗, ~P3) = 0

Expand the new equations...at O(λ)

Terms with Aj→DAD→k enter through ∆M
Terms with |MD→n| enter through ∆E ∗

M. T. Hansen (UW) Coupled Channel Generalization of LL 26 / 29



Result
The final result may be written as

|Cπ(Ln, ~Pn) AD→ππ + CK (Ln, ~Pn) AD→KK | = |MD→n| .

AD→ππ and AD→KK are complex. However one can show that, given
M(E ∗ = MD), there are actually only two real degrees of freedom
(Watson’s theorem).

The coefficients Cπ and CK depend on MD , on {Lk , ~Pk} and also on

M(E ∗ = MD) and
dM(E ∗)

dE ∗

∣∣∣∣
MD

.

So we have two real unknowns, and three independent equations.
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Summary

Generalized Lüscher method to include an arbitrary number of two particle
channels in a moving frame.

Generalized Lellouch-Lüscher formula to give decay into strongly coupled
two particle channels.

Next step is four particle channels.
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Relation on States
The final result may be written as

|Cπ(Ln, ~Pn) AD→ππ + CK (Ln, ~Pn) AD→KK | = |MD→n| .

|Cπ(Ln, ~Pn) 〈ππ|HW |D〉+ CK (Ln, ~Pn) 〈KK |HW |D〉 = |L〈n|HW |D〉| .

Note that this result is really a relation on states

L〈n| = Cπ〈ππ, out|+ CK 〈KK , out|+ · · ·
where the · · · indicate higher angular momentum states which don’t
contribute to matrix elements.
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Free curves

∆M(L,E ∗, ~P = 0) = 0

Curves predicted by UChPT together with free particle curves
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Parametrization

Choosing(
S
)

=

(
cos ε − sin ε
sin ε cos ε

)(
e2iδα 0

0 e2iδβ

)(
cos ε sin ε
− sin ε cos ε

)
,

allows us to rewrite
det[F−1 + iM] = 0

as

[tan δα + tanφP(q∗1)][tan δβ + tanφP(q∗2)]

+ sin2ε [tan δα − tan δβ][tanφP(q∗1)− tanφP(q∗2)] = 0.

where
tanφP(q∗) = −π3/2(E/E ∗) x [ZP

00(1; x2)]−1 .
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Parametrization

[tan δα + tanφP(q∗1)][tan δβ + tanφP(q∗2)]

+ sin2ε [tan δα − tan δβ][tanφP(q∗1)− tanφP(q∗2)] = 0

Observe that this reduces to the uncoupled case for

ε = 0

tanφP(q∗1) = tanφP(q∗2) (degenerate masses)

tan δα = tan δβ
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Alternative definition of F

Fij ;`1,m1;`2,m2 ≡ δijFi ;`1,m1;`2,m2

≡ δijηi

Req∗i
8πE ∗

δ`1`2δm1m2 −
i

2E ∗

∑
`,m

√
4π

q∗ `i
cP`m(q∗ 2

i )

∫
dΩY ∗`1,m1

Y ∗`,mY`2,m2



cP`m(q∗ 2) =
1

L3

∑
~k

ω∗k
ωk

eα(q∗ 2−k∗ 2)

q∗ 2 − k∗ 2
k∗ `Y`,m(k̂∗)

− δ`0P
∫

d3k∗

(2π)3

ω∗k
ωk

eα(q∗ 2−k∗ 2)

q∗ 2 − k∗ 2
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Derivation

For a given {L, ~P}, the two-particle energies of the finite volume theory
are the values of E where

CL(E , ~P) ≡
∫
L
d4x e−i

~P·~x+iEt〈Ω|Tσ(x)σ†(0)|Ω〉L

diverges. Here σ(x) is an operator which couples to two particle states.

We now turn to a nonperturbative calculation of the finite volume
corrections to CL. We work in scalar field theory and allow all terms with
even powers of the single particle interpolating fields.

Let’s first consider E ∗ < 2MK (also < 4Mπ) so that we only have to worry
about two pion states.11

11Kim, C. et al. Nucl.Phys. B727, 218–243 (2005).
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Derivation

Then CL(E , ~P) is equal to a sum of all Feynman diagrams built from...

endcaps σ(q) and σ†(q′). These are regular functions of momentum,
determined by the specific form of the operators.

σσ†

arbitrary even vertices

exact pion propagators

= i
z(q)

(q0)2 − ~q 2 −M2
π + iε
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Derivation

Schematically

+ · · ·

σσ†CL(E , ~P) = + σ† σ

+ σσ†

+ σ† σ
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Derivation

For the values of E ∗ being considered, only two propagators can go on
shell.

+ · · ·

σσ†CL(E , ~P) =

σ

}
+ σ†

{
+ + · · ·+

M. T. Hansen (UW) Coupled Channel Generalization of LL 38 / 29



Derivation

σσ†CL(E , ~P) =

+

+ σ + · · ·

σ

iK

iK

iK

σ†

σ†

Let’s focus on the first term.
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Derivation

σσ†CL(E , ~P) =

+

+ σ + · · ·

σ

iK

iK

iK

σ†

σ†

Let’s focus on the first term.
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Finite volume effects in first term

Implies we can write

first term = infinite volume version of first term

+

∫
dΩdΩ′ σ∗(q̂)F(q̂, q̂′)σ∗†(q̂′)

first term = infinite volume version of first term

− σ`mF`m,`′m′σ†`′m′

+

F

σ† σσσ† = σσ†

In the term with F only the on-shell values of the σs are needed.

M. T. Hansen (UW) Coupled Channel Generalization of LL 40 / 29



Finite volume effects in first term

Implies we can write

first term = infinite volume version of first term

+

∫
dΩdΩ′ σ∗(q̂)F(q̂, q̂′)σ∗†(q̂′)

first term = infinite volume version of first term

− σ`mF`m,`′m′σ†`′m′

+

F

σ† σσσ† = σσ†

In the term with F only the on-shell values of the σs are needed.

M. T. Hansen (UW) Coupled Channel Generalization of LL 40 / 29



Derivation
Substitute

+

F

σ† σσσ† = σσ†

into

σσ†CL(E , ~P) =

+

+ σ + · · ·

σ

iK

iK

iK

σ†

σ†
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Derivation

F

+

{
CL(E , ~P) = C∞(E , ~P)

+ · · ·

+ · · ·
}

+×
{

σ σ

+ iKσ†σ†

iKA + · · ·

A′

}
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Derivation

A′
}

A A′CL(E , ~P) = C∞(E , ~P) +

FF

F

A+ iK iKiK+ + · · ·

+ · · ·

{

iM
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Derivation

CL(E , ~P) = C∞(E , ~P) +

A A′

F F

A A′

F

F F

F

A A′

+

+ + · · ·

iM

iM iM
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Result

We conclude

CL(E , ~P)− C∞(E , ~P) = −
∞∑
n=0

A′F [−iMF ]nA = −A′ 1

F−1 + iM
A

So for given values of {L,~nP}, the energies in the spectrum are all E ∗ for
which

det(F−1 + iM) = 0 .
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