

Hyperon Nucleon Interactions and Dense Matter

Martin J. Savage University of Washington June 2012, Lattice 2012 Cairns, Australia

NPLQCD

Emmanuel Chang Barcelona

William Detmold Willam+Mary

Huey-Wen Lin U. of Washington

Tom Luu LLNL

Saul Cohen U. of Washington

Kostas Orginos William+Mary

Assumpta Parreno Barcelona

Marton Savage U. of Washington

Aaron Torok Andre Walker-Loud Indiana LBNL

Jefferson Lab

... to make predictions for the structure and interactions of nuclei using lattice QCD.

US Lattice Quantum Chromodynamics

Core-Collapse Supernova and the Heavy Elements

Black-Hole or Neutron Star ?

(Mezzacappa et al)

Core-Collapse Supernova and the Heavy Elements

n

(Mezzacappa et al)

Role depends upon Interactions

Nuclear EoS Wednesday, June 27, 2012

Hyperons in Matter : Present Predictive Capability

Multi-Volume Study by NPLQCD 2009 - 2011

lattice spacing : $b \sim 0.123$ fm pion mass : $m_{\pi} \sim 390 \text{ MeV}$ fermion action : Clover anisotropy : $\xi_t \sim 3.5$

 $L \sim 2 \text{ fm}$

 $L \sim 2.5 \text{ fm}$

 $L \sim 3 \text{ fm}$

resources :~ 80×10^6 core hrs $m_{\pi}L \sim 4$, 5, 6, 8 $m_{\pi}T \sim 9$, 9, 9, 18 Wednesday, June 27, 2012

Multi-Volume Study by NPLQCD 2009 - 2011

L	cfgs	Srcs	
24	2215	390,000	
32	739	135,000	

$L^3 imes T$	$16^3 \times 128$	$20^3 imes 128$	$24^3 \times 128$	$32^3 \times 256$	Extrapolation
$L \ (fm)$	~ 2.0	~ 2.5	~ 3.0	~ 4.0	∞
$m_{\pi}L$	3.86	4.82	5.79	7.71	∞
$m_{\pi}T$	8.82	8.82	8.82	17.64	∞
M_N (t.l.u.)	0.21004(44)(85)	0.20682(34)(45)	0.20463(27)(36)	0.20457(25)(38)	0.20455(19)(17)
M_{Λ} (t.l.u.)	0.22446(45)(78)	0.22246(27)(38)	0.22074(20)(42)	0.22054(23)(31)	0.22064(15)(19)
M_{Σ} (t.l.u.)	0.22861(38)(67)	0.22752(32)(43)	0.22791(24)(31)	0.22726(24)(43)	0.22747(17)(19)
M_{Ξ} (t.l.u.)	0.24192(38)(63)	0.24101(27)(38)	0.23975(20)(32)	0.23974(17)(31)	0.23978(12)(18)

Generic Calculations of 2-Body Interactions

1) Maiani-Testa Theorem

2) Luscher : Measure energy-eigenvalues of the two-hadron system

A Primer -1990 : Luscher says

Explicitly, the stationary effective Schrödinger equation in the centre-ofmass frame reads

$$-\frac{1}{2\mu}\Delta\psi(\mathbf{r}) + \frac{1}{2}\int \mathrm{d}^3r' \, U_E(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}') = E\psi(\mathbf{r}),\tag{7.1}$$

where the parameter E is related to the true energy W of the system through

$$W = 2\sqrt{m^2 + mE}.$$
 (7.2)

The "potential" $U_E(\mathbf{r}, \mathbf{r}')$ is the Fourier transform of the modified Bethe-Salpeter kernel $\hat{U}_E(\mathbf{k}, \mathbf{k}')$ introduced in ref.[3]. It depends analytically on

38

E in the range -m < E < 3m and is a smooth function of the coordinates **r** and **r**', decaying exponentially in all directions \dagger . Furthermore, the potential

It therefore follows that....

Taking U to be energy-independent is a modeldependent assertion and not a QCD prediction

Two-Particle Energy Levels (Luscher)

Below Inelastic Thresholds :

Measure on lattice

$$\delta E = 2\sqrt{p^2 + m^2} - 2m$$

$$p \cot \delta(p) = \frac{1}{\pi L} \mathbf{S} \left(\left(\frac{Lp}{2\pi} \right)^2 \right)$$

$$\mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{\Lambda_j} \frac{1}{|\mathbf{j}|^2 - \eta} - 4\pi\Lambda_j$$

Gives the scattering amplitude at δE

 $n\Sigma^-$ at a pion mass of ~390 MeV

Effective Field Theory introduced by Weinberg in the early 1990's to systematize nuclear forces

- Low-energy EFT of QCD
- Chiral symmetries of QCD
- Quark mass dependence
- Renormalization Group
- Softer Interactions
 - V_{lowk} , SRG

1 : local 4-baryon contact interaction (1 parameter)2 : one meson exchange (0 new parameters)

Convergence of (Systematic) Expansions of Potentials

Figure 3: Chiral expansion of the isovector-tensor (upper row) and isoscalar central (lower row) long-range potentials $\tilde{W}_T(r)$ and $\tilde{V}_C(r)$, respectively. The left (right) panel shows the results for the EFT without (with) explicit $\Delta(1232)$ degrees of freedom. The light-shaded band shows the estimation of the intrinsic model dependence associated with the short-range components as explained in the text (only shown for the theory without deltas).

LO Weinberg in $n\Sigma^-$

Require regulation - use simple compact shape

- square-well, Gaussian, exponential
- one length scale, one coupling

- diagonalize H in full 3-d mom. space (constrained by L and a)
- choose R <<1/mmes and fix C_0 to energy-eigenvalue
- extended repulsive core Luscher ?
- use both Luscher and Weinberg EFT
 - phase-shifts are same within uncertainties!

¹S₀: 3-d Schrodinger, Modifications to Luscher's Relation ?

Attractive core is compact - Luscher's relation is valid

Haidenbauer and Meissner (2007)

Meissner+Haidenbauer - Experiment + YN-EFT (LO) 60 30 35 ${}^{1}S_{0}$ 20 50 10 (qeduees) 30 20 0 10 20 -10 20 ∽ -30⊦ NSC97f Juelich '04 EFT NSC97f -40 Juelich '04 10 -50 FF1 -60<u>∟</u> 100 200 300 400 500 100 200 300 'n 400 500 ${\rm p}_{\rm LAB}~({\rm MeV})$ p_{LAB} (MeV)

NPLQCD - Lattice QCD + YN-EFT (LO) 30 60 35 ${}^{1}S_{0}$ 20 50 10 (seaulos) 30 20 0 -10 -20 ر ا30 ا NSC97f Juelich '04 EFT NSC97f -40 Juelich '04 EFT 10 -50 0^L -60^L 100 200 300 400 500 200 300 100 400 500 p_{LAB} (MeV) p_{LAB} (MeV)

Binding in the Singlet Channel

 Σ^- in Dense Matter Fumi Limit Approx. (assertions)

$$\Delta E = -\frac{1}{\pi \mu} \int_{0}^{k_{f}} dk \, k \left[\frac{3}{2} \delta_{3S_{1}}(k) + \frac{1}{2} \delta_{1S_{0}}(k) \right]$$

$$\prod_{n} + \mu_{e^{-}} - M_{\Sigma}$$

$$\prod_{n} + \mu_{e^{-}} - M_{\Sigma}$$
Cancellation between channels in dense matter energy-shift of hyperon

SU(3) Limit - Isotropic Clover

NPLQCD : e-Print: arXiv:1206.5219 [hep-lat]

Closing Remarks

- \bullet LQCD calculations of $n\Sigma^-$
- Luscher and 3-d SE consistent
- Extrapolation with (W)EFT
- Consistent with phase-shift analysis of (limited) expt data
- Future LQCD calculations will supersede experiment
- Refine understanding of dense matter
 Further theoretical developments required

END

LQCD + (W)EFT consistent with limited data sets
Next generation of LQCD will be more precise than expt