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Recent RBC/UKQCD 2+1 flavor DWF ensembles

2010 analysis
Phys.Rev. D83 (2011) 074508
Phys.Rev. D84 (2011) 014503

Current analysis uses all 3 ensembles

2008 analysis
Phys.Rev. D78 (2008) 114509
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Improving Domain Wall Fermions via DSDR

•	 When underlying gauge field changes 
topology, the DWF modes can extend 
farther in the fifth dimension

•	 This gives a non-perturbative contribution 
to residual chiral symmetry breaking

•	 Becomes problematic at strong coupling

•	 Add ratio of determinants of twisted Wilson 
fermions to suppress these gauge field 
dislocations

•	 Tune to minimize residual mass while still 
preserving toplogical ergodicity
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•	 DSDR = Dislocation Suppressing Determinant Ratio

im  are eigenvalues of the 
Hermitian Wilson operator 



Force Gradient Integrator (FGI)
•	 Proposed by Clark and Kennedy.  Implemented (and simplified) in CPS by Hantao Yin

•	 For 163 × 32 × 16 volumes, no speed-up compared to O(δτ2) Omelyan 
 

Scaling behavior of Integrators
We implemented the force gradient integrator and tested it on a
163 × 32× 16 lattice with 420MeV pion.
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Figure: Scaling behavior Omelyan 2.44± 0.21 Force Gradient 4.16± 0.21
•	 For larger volumes, where δH grows with volume, force gradient may be helpful

•	 Tests on 483 × 64 × 16 with 220 Mev pions using FGI and retuning Hasenbush masses, 
184 minutes/accepted configuration went down to 108 minutes/accepted configuration.

•	 For DWF+ID ensembles analyzed here, lattice is 323 × 64 × 32.  For m = 0.001, FGI 
used with 5 intermediate Hasenbusch preconditioning masses, all at top integration 
level.



mres, Input Masses, Reweighting Range for Strange Quark

amres 0.000666(8) 0.00308(6) 0.001842(7)
Ls 16 16 32

lightest input dynamical
quark mass (aml)

0.004 0.005 0.001

input dynamical heavy
quark mass 0.03 0.04 0.045

ams - amres (from fits) 0.0263(9) 0.0336(13) 0.0467(6)
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FIG. 11. Simulated quark masses on each of our three ensemble sets brought into a common normalization

with the bare quark masses on our 32I ensemble set using the scaling factors determined in section V. The

top panel shows the light quark mass regime and the bottom panel the heavy quark mass regime. Circular

points are used to mark the unitary masses and square points the partially-quenched masses. The physical

up/down and strange quark masses are marked with dashed lines.

where the superscript R indicates a renormalized physical quark mass (in a general scheme), and

mRl0 and mRh0 are the expansion points for the light and heavy quark masses respectively. In our

power counting scheme, a term in the lattice spacing arises only in the expansion of the leading

term C fπ
0 . It is important to note that the a2 coefficients parameterizing the lattice artifacts will

differ between the Iwasaki and Iwasaki+DSDR gauge actions, therefore for the remainder of this

work we label these coefficients with a superscript denoting the lattice action.

As discussed in ref. [1], the scaling parameters Zel and Z
e
h that relate the quark masses between

the ensemble e and the primary ensemble set can be thought of as ‘renormalization coefficients’,

removing the ultraviolet divergence and converting the masses into a mass-dependent ‘matching

scheme’ defined with lattice regularization at β = 2.25. It is therefore unnecessary to renormalize

the input quark masses into a continuum renormalization scheme such as MS prior to performing

Checking Scaling at Unphysical Masses

•	 Total light and strange quark masses, using bare quark normalization for 32 DWF+I

•	 Can check scaling at unphysical quark masses by interpolating/extrapolating data to 
masses where mll/mhhh and mlh/mhhh are identical on different ensembles. 

Match point for 24I and 32IMatch point for 32ID and 32I



Scaling at unphysical light quark mass
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FIG. 26: Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323

and 243 lattices at the matching point corresponding to ml = 0.006, mh = 0.03 on the 323 lattice. A value of

unity indicates perfect scaling. The ratios mll/mhhh and mlh/mhhh (and consequently mll/mlh) are defined

to scale perfectly at these quark masses as a consequence of our choice of scaling trajectory.

the quark masses used in the matching procedure above. The figure shows that we can expect only

small scaling violations on the order of 1–2% for the other quantities used in our global fits, and

also confirms that other dimensionless combinations of lattice quantities would be equally suitable

choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl , Zh and Ra determined as described in the previous section we are

ready to perform a simultaneous fit of all our pion, kaon and Ω mass and decay constant data

to either the NLO forms in chiral perturbation theory, Eq. (41) to Eq. (45), or the analytic forms

Eq. (49) to Eq. (55). We also correct for finite volume effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume sum of Bessel functions [44]. The iterative

procedure is the same for each of these three fit ansätze. For each iteration i, we:

1 estimate the physical strange-quark masses, mis, from the (i−1)th iteration;

2 interpolate and reweight the data to mis;

3 fit the mx,my,ml dependence of the light pseudoscalar mass and decay constant;

4 fit the mx,ml dependence of kaon quantities at mh =mis;
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FIG. 10. Ratios of various dimensionless combinations of observables between the 32I and 32ID ensemble

sets. The combination of physical quantities is given above or below the corresponding point. A ratio of

unity indicates perfect scaling between the two ensemble sets.

simulated quark masses on a common scale, and draw a line to indicate the physical point as

determined in section V. These plots are shown in figure 11.

C. Chiral/Continuum Fitting Strategy

The chiral/continuum fit forms are obtained via a joint expansion in a2 and m̃ f . As in ref. [1] we

consider both an NLO expansion around the SU(2) chiral limit using partially-quenched chiral per-

turbation theory (PQChPT) and also a leading-order analytic expansion about an unphysical light-

quark mass. Including finite-volume effects in the ChPT, this provides three fit ansätze, which we

label ‘analytic’, ‘ChPT’ and ‘ChPTFV’, where the latter two refer to the chiral perturbation the-

ory forms without and with finite-volume corrections respectively. For each ansatz we expand the

heavy-quark mass dependence to leading order in the vicinity of the physical strange-quark mass.

We use a power-counting scheme whereby terms of order m̃ f a2 and higher are neglected. This

truncation leaves only a single a2 term arising from the expansion of the leading order parameter.

For example, the analytic form for the pion decay constant fll in physical units is as follows:

fll =C fπ
0

(
1+C fπ

a a2
)
+C fπ

1 (mRv −mRl0)+C
fπ
2 (mRl −mRl0)+C

fπ
3
(
mRh −mRh0

)
, (24)

where the superscript R indicates a renormalized physical quark mass (in a general scheme), and

mRl0 and m
R
h0 are the expansion points for the light and heavy quark masses respectively. In our

power counting scheme, a term in the lattice spacing arises only in the expansion of the leading

Compare
•	 DWF+I:  1/a = 2.28 GeV

•	 DWF+I:  1/a = 1.73 GeV
(Phys. Rev. D83 (2011) 074508)

Compare
•	 DWF+I: 1/a = 2.28 GeV

•	 DWF+ID: 1/a = 1.37 GeV
(RBC/UKQCD to appear)

2%

5%

See few percent scaling errors from / .a1 1 73 GeV"3= , with larger %O 5_ i errors from 1/a 
= 1.37 GeV



Parameters in DWF+I and DWF+ID Global Fits
•	 Simultaneous fit to mπ

2, mK
2, fπ, fK, and mΩ, with mπ, mK and mΩ chosen to be 

quantities without O(a2) corrections

•	 18 Parameters in SU(2) chiral expansion:

*	 mπ
2 and fπ:  8 parameters − 2 LO, 4 NLO, 2O(a

2)

*	 mK
2 and fK:  6 parameters − 2 LO, 4 NLO, 2O(a

2)

*	 mΩ:  1 LO, 1 NLO

•	 Fits also determine 

*	 3 lattice spacings

*	 2 ratios of light quark mass renormalization factors

*	 2 ratios of strange quark mass renormalization factors

*	 ms

•	 Only use SU(2) ChPT to NLO

•	 Also do analytic fits to compare with ChPT and to help estimate chiral extrapolation 
errors



Global Fits to Multiple Ensembles

•	 Fit mπ
2, fπ, mK

2, fK and mΩ to an expansion in powers of a2 and ml, 
including SU(2) logs where appropriate.  Examples are 
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2. SU(2)

m2ll = χl
[
1+ cBa

2
]
+ χl ·

{
16

f 2

(
(2L

(2)
8 −L

(2)
5 )+2(2L

(2)
6 −L

(2)
4 )

)
χl +

1

16π2 f 2
χl log

χl

Λ2χ

}

(11)

fll = f
[
1+ c f a

2
]
+ f ·

{
8

f 2
(2L

(2)
4 +L

(2)
5 )χl −

χl

8π2 f 2
log

χl

Λ2χ

}

. (12)

3. SU(2) for kaons

m2xy = B(K)(mh) m̃y
[
1+ cB(K)a

2
]
+ B(K)(mh) m̃y

{
λ1(mh)

f 2
χl +

λ2(mh)

f 2
χx

}
(13)

fxy = f (K)(mh)
[
1+ c f (K)a

2
]

+ f (K)(mh)

{
λ3(mh)

f 2
χl +

λ4(mh)

f 2
χx

−

1

(4π f )2

[
χx+χl

2
log

χx+χl

2Λ2χ
+
χl−2χx

4
log

χx

Λ2χ

]}

(14)

4. Omega baryon

For a given choice of the valence strange mass my and the dynamical strange mass mh, we simply

fit to

mΩ(a2,ml,mh) = mΩ(0,0,mh)
[
1+ cmΩ,aa

2+ cmΩ,mlml
]

(15)

5. Counting parameters for fits

We want to do simultaneous fits of our data to Eqs. 11 to 15 for two ensembles, i.e.. using SU(2)

fits for the light quarks, SU(2) for kaons for the kaon and a linear fit for mΩ. The following

parameters will enter the fits and, after listing them, we discuss various choices one can make for

•	 Note different O a2` j coefficients used for DWF+I and DWF+ID

•	 Fit all partially quenched data, including SU(2) ChPT finite volume	 
corrections in fit

•	 Reweight data from simulation mh to self-consistently determined ms (Jung)

•	 Interpolate valence propagators to self-consistently determined ms

•	 Use mπ mK and mΩ set scale.
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2/mf versus mf

•	 Early fits from partial DWF+ID dataset

•	 Data consistent with chiral logarithms



mπ
2/mf versus mf

42

FIG. 13. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the pion mass (top) and fπ (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show

the data at the simulated strange-quark mass and the corresponding fit curves on the ml = 0.001 ensemble,

and the right-hand plots those on the ml = 0.0042 ensemble. The plots of the pion mass have m2π/(m̃x+ m̃y)

on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data.
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FIG. 15. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the square of the kaon mass (left) and fK (right) on the 32ID ensembles.

FIG. 16. The chiral extrapolation of the pion decay constant using the analytic and ChPTFV ansätze.

Overlaying these curves we have plotted the unitary data extrapolated to the continuum limit using the a2

dependence of our fit forms. The points shown in pastel colors were corrected using the analytic fit form,

and those in bold colors by the ChPTFV form. Here the circular points are those included in the fit, and the

diamond points are those excluded by the cuts at 350 MeV (ChPTFV) and 260 MeV (analytic). The orange

and brown square points show the continuum predictions obtained using the ChPTFV and analytic ansätze

respectively. Note that the analytic fit does not include any unitary data points on the 32I and 24I ensembles

as they lie above the pion mass cut (cf. table XI).

Chiral Extrapolation for fπ
•	 DWF+ID ensemble gives results for much smaller quark masses.

•	 Can drop pion masses above 350 MeV for ChPT and still do fits.

•	 Can drop pion masses above 260 MeV for analytic fits and still do them.

•	 ChPT and analytic agree if pion masses below 260 MeV are used.

•	 fπ now much closer to physical value than with 2010 analysis76
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FIG. 36: Chiral extrapolation of the pion decay constant using the analytic (52) and ChPT (42) fit ansätze.

Here, the lattice results from the 243 and 323 ensembles are shown along with the mass dependence we

infer both at each lattice spacing and in the continuum limit. The consistency of the two ensembles with

each other and with this continuum limit is indicative of the size of lattice artefacts. The horizontal solid

line indicates the value fπ− = (130.4±0.04±0.2)MeV [45].

It is of interest to pose the scientific question whether any of the fit ansätze could in principal be

consistent with the experimentally measured pion decay constant? To answer this question we

update the analysis of Ref. [47] and include an artificially created data point for each ensemble

that represents the experimental result in the continuum limit but includes our fitted a2 correction

at each non-zero lattice spacing. This is displayed in figure 37 and we find that the analytic

ansätze could be consistent with an uncorrelated χ2/dof = 1.9(7), while NLO ChPT would fail

to simultaneously fit our data and the physical point, with χ2/dof = 6(1) (infinite volume) and

χ2/dof = 5(1) (finite volume).

Of course, improved statistical errors, simulations at a third lattice spacing and larger physical

volumes would give us better control of the continuum extrapolation and finite-volume effects.

However, our main conclusion is that it is imperative to simulate with masses substantially nearer

to the physical point; this will constrain both fit forms to give more consistent predictions. Ul-

timately simulations will be performed directly at physical quark masses and will eliminate this

error completely. We are currently generating new ensembles with a coarser lattice spacing, with a

substantially larger volume and with very much lighter pion masses (for a preliminary discussion

2010 analysis Current analysis



Chiral Extrapolation for BK 72

FIG. 20. The analytic (left) and ChPTFV (right) fit curves overlaying the partially-quenched data on the

32ID ensembles at the simulated strange quark mass. The fits were performed to the data set with corre-

sponding pion masses mπ < 350 MeV, with the data renormalized in the SMOM(/q,/q) intermediate scheme.

1. Systematic Errors

For our central values and statistical errors of our final MS prediction, we follow the 2010 analysis

in taking the results obtained using the SMOM(/q,/q) intermediate scheme, which is best described

by one-loop perturbation theory. Following section V we estimate the finite-volume and chiral

extrapolation systematics on this quantity from the differences between the ChPTFV result (which

we take as our central value) and the ChPT and analytic results respectively. As we propagated

the differences between the lattice spacings through our analysis in section VII A 4, the aforemen-

tioned systematics on the renormalization factors are automatically included in the differences

above.

The remaining systematic errors are associated with the perturbative conversion into the MS

scheme. The largest of these is the perturbative truncation error. To determine this we again

follow the 2010 analysis strategy of taking the difference between the values of BK in the MS-

scheme at 3 GeV obtained using the SMOM(/q,/q) and SMOM(γµ ,γµ) intermediate schemes,

the latter of which is also well-described by perturbation theory. As discussed in section VIA 5

and above, there are non-perturbative effects associated with the spontaneous chiral symmetry

breaking and the presence of additional energy-scales (ΛQCD, ms, etc.), that contribute to the per-

turbative systematic. In ref. [2] we found that in the non-exceptional schemes these effects are tiny

compared to the truncation systematic, therefore we do not include these effects in our systematic

73

FIG. 21. The chiral extrapolation of BK in the SMOM(/q,/q) scheme in the continuum limit. The circular

and diamond-shaped data points in bold colors show the data corrected to the continuum limit using the

ChPTFV fit form, and those in pastel colors via the analytic form. The circular points indicate those data

included in the fits, and the diamond points those that were not. The brown and orange curves show the

analytic and ChPTFV chiral fit forms and the corresponding square data points the extrapolated values at

the physical up/down quark mass. All data and curves are shown at the physical strange quark mass.

error budget.

2. Final Results

Using the ChPTFV result in the SMOM(/q,/q) for the central value and statistical error, and obtain-

ing the chiral and finite-volume systematic errors as above, we find:

BK(SMOM(/q,/q),3 GeV) = 0.540(8)(7)(3) . (71)

where the errors are associated with the statistical, chiral, and finite-volume respectively. Convert-

ing this to the MS-scheme at 3 GeV using one-loop perturbation theory we obtain

BK(MS,3 GeV) = 0.535(8)(7)(3)(11) , (72)

where the first three errors are as before, and the final error is that associated with the truncation

of the perturbative series. Converting to the Renormalisation-Group Invariant (RGI) scheme, we

find

B̂K = 0.758(11)(10)(4)(16) . (73)
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FIG. 20: The continuum limit chiral extrapolation obtained from our global fits using NLO SU(2) PQChPT

and LO analytic fits. The data is shown corrected to the continuum limit using the O(a2) corrections

obtained from both fit forms.

0 0.005 0.01 0.015 0.02 0.025
ml (GeV)

0.52

0.53

0.54

0.55

0.56

0.57

B K
(M

S,
 3

G
eV

)

323 data (uncorrected)
243 data (uncorrected)
LO analytic
NLO SU(2) ChPT

FIG. 21: The continuum limit chiral extrapolation obtained from our global fits using NLO SU(2) PQChPT

and LO analytic fits. As opposed to in Figure 20, the data plotted here has not been corrected to the

continuum limit. The fit curves plotted are those performed to the continuum data as before.

1. Chiral fit systematics

In Reference [4, 19] we showed that a continuum fit to our two lattices using NLO SU(2) PQChPT

fit forms gives a value for fπ that is ∼ 10% too low after finite volume effects are included.

2010 analysis Current analysis

•	 DWF+ID data rise slightly for light quarks

•	 Factor of 0.906(3) between normalization 
in graphs of 2010 and current analysis



DWF+I (2010 Analysis) DWF+I and DWF+ID
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FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323,ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.

f continuumπ = 124(2)(5)MeV (61)

f continuumK = 149(2)(4)MeV (62)

( fK/ fπ)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of fπ influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

fπ cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ fπ and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the

β = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)

39

In the previous section we demonstrated that the ChPTFV fit forms describe our data reliably over

a considerably larger range of pion masses than the linear ansatz. For the final predictions given

in the following sections we therefore take the ChPTFV results for our central values and use the

analytic ansatz only to estimate the chiral systematic. However, we continue to find it striking that

a linear ansatz appears capable of describing QCD at the 1% level from the 260 MeV pion-mass

regime down to the physical point, and at the 2% level if that range is extended to 350 MeV.

C. Global Fit Predictions

Applying the procedure detailed above, we present our predictions for the pion and kaon decay

constants:

fπ = 127.1(2.7)(0.7)(2.5)MeV, (27)

fK = 152.4(3.0)(0.1)(1.5)MeV, (28)

fK/ fπ = 1.1991(116)(69)(116) . (29)

Here the errors are statistical, chiral and finite-volume respectively. Note that by restricting the

ChPTFV fit to mπ < 350 MeV rather than mπ < 420 MeV used in the 2010 analysis (a 30% cut

in the light quark mass), we obtain a value for fπ that is now highly consistent with the known

physical value, justifying our assertion that the previously observed deviation was mainly due to

the influence of higher order terms in the chiral expansion.

For the inverse lattice spacings we obtain:

a−1(32I) = 2.310(37)(15)(9) GeV, (30)

a−1(24I) = 1.747(31)(4)(4) GeV, (31)

a−1(32ID) = 1.3709(84)(8)(3) GeV. (32)

For comparison, in the 2010 analysis we obtained a−1(32I)= 2.282(28)(1)(1)GeV and a−1(24I)=

1.730(25)(1)(0) GeV by fitting only to the Iwasaki data. These results are highly consistent, al-

though we find a considerable enhancement in the systematic errors. Upon further investigation

we determined that these differences arise almost entirely because the scaling factors Zl , Zh and

Ra are now allowed to vary between the fits (generic scaling), as opposed being fixed to the values

obtained at some unphysical mass point (fixed trajectory) as in the 2010 analysis: In the fixed

trajectory case the prediction for the physical Omega baryon mass, which we use to set the overall
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very interesting to see how the different ansätze for the chiral extrapolation become constrained or

invalidated as we perform simulations with even lighter masses. We point out that the difference

in the results from the analyses using the finite-volume ChPT and analytic ansätze is much smaller

for the other quantities studied in this paper than for fπ .

The main physical results of this study are:

fπ = 124(2)(5)MeV {Eq.(61)}; fK = 149(2)(4)MeV {Eq.(62)};
fK
fπ

= 1.204(7)(25) {Eq.(63)};

mMSs (2GeV) = (96.2±2.7)MeV {Eq.(95)}; mMSud (2GeV) = (3.59±0.21)MeV {Eq.(94)};

[ΣMS(2GeV)]1/3 = 256(6)MeV {Eq.(98)};

r0 = 0.487(9) fm and r1 = 0.333(9) fm {Eq.(66)} . (103)

For convenience we also display the equation number where the results were presented earlier in

this paper to help the reader find the corresponding discussion. All the results in Eq. (103) were

obtained after reweighting the strange-quark mass to its physical value at each β , and the renor-

malized quark masses were obtained using non-perturbative renormalization with non-exceptional

momenta as described in SectionVI. The low-energy constants obtained by fitting our data to

NLO chiral perturbation theory can be found in Sec. VE.

The configurations and results presented in this paper are being used in many of our current stud-

ies in particle physics phenomenology, including the determination of the BK parameter of neutral

kaon mixing in the continuum limit [34]. In parallel to these studies we are exploiting config-

urations generated at almost physical pion masses on lattices with a large physical volume (∼

4.5 fm) but at the expense of an increased lattice spacing. Preliminary results obtained for the

meson spectrum and decay constants and for ΔI = 3/2 K → ππ decay amplitudes were recently

presented in Refs. [48, 69]. Having access to data with excellent chiral and flavor properties with a

range of lattice spacings and quark masses makes this an exciting time indeed for studies in lattice

phenomenology.
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B. Renormalized quark masses

After the detailed discussion of the quark-mass renormalization, it is now straightforward to com-

bine the renormalization constants in Eqs. (92) and (93) with the physical bare quark masses on

the 323 lattice in Eq. (64) to obtain the light and strange quark masses renormalized in MS scheme:

mMSud (2GeV) = ZMS(32)cml (µ = 2GeV,n f = 3) · m̃ud(323) ·a−1(323)

= 3.59(13)stat(14)sys(8)ren MeV, (94)

mMSs (2GeV) = ZMS(32)cmh (µ = 2GeV,n f = 3) · m̃s(323) ·a−1(323)

= 96.2(1.6)stat(0.2)sys(2.1)ren MeV, (95)

where the three errors on the right-hand side correspond to the statistical uncertainty, the system-

atic uncertainty due to the chiral extrapolation and finite volume, and the error in the renormaliza-

tion factor. We recall that for the error due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-volume NLO SU(2) and analytic fits and for

the central value we take the average of these results. We estimate the finite-volume effects from

the difference of the results obtained using finite volume and infinite-volume NLO ChPT fits and

combine these errors in quadrature. The finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms
mud

= 26.8(0.8)stat(1.1)sys. (96)

We end this section by presenting our results for the leading-order LEC B and the chiral conden-

sate. Using the finite-volume NLO ChPT fits we find

BMS(2GeV) = ZMS(32)−1ml (µ = 2GeV,n f = 3) ·B(323) ·a−1(323) = 2.64(6)stat(6)sys(6)ren GeV.

(97)

Combining this result with the pion decay constant in the chiral limit, also obtained using the

finite-volume NLO ChPT fits the chiral condensate is found to be

[ΣMS(2GeV)]1/3 = [ f 2B(2GeV)/2]1/3 = 256(5)stat(2)sys(2)ren MeV. (98)

In Eqs. (97) and (98) the second error is only due to finite volume corrections estimated from the

difference of finite and infinite volume NLO ChPT fits.
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are negligable compared to the truncation error on our final results, it is illustrative to consider

at what point they enter into our calculations. The RI/(S)MOM schemes are actually defined in

the limit µ2 � Λ2QCD, at which the behavior is purely perturbative. The momentum schemes that

we actually implement on our lattice can be therefore be regarded as different schemes that take

into account the non-perturbative behavior. We therefore consider the aforementioned errors not

as properties of the numerical renormalization factors, but rather as additional errors on the per-

turbative conversion to the MS-scheme, arising from the fact that the scheme-change factors are

calculated using a slightly different scheme than the numerical results.

There are two final sources of systematic error on the renormalization conditions – those arising

from the chiral extrapolation and finite-volume errors on the lattice spacings used in the scale-

setting and the continuum extrapolation. In the previous section, we repeated the analysis using

the lattice spacings obtained from our global fits with the three different chiral ansätze. We can

therefore estimate these errors using the procedure discussed in section VB, namely taking the

central values from the ChPTFV ansatz, the chiral error from the difference between this and the

analytic results, and the finite-volume error from the difference of the ChPTFV and ChPT results.

The final values for the quark mass renormalization factors are:

Zcml(MS,3 GeV) = 1.361(26)(17)(2)(16) ,

Zcmh(MS,3 GeV) = 1.343(17)(3)(1)(16) .
(53)

Here the errors are due to statistical, chiral, finite-volume and truncation effects.

B. Results for the Physical Quark Masses

Multiplying Zml and Zmh by the physical quark masses in the matching scheme, we obtain

mu/d(MS,3 GeV) = 3.05(8)(6)(1)(4)MeV, ms(MS,3 GeV) = 83.6(1.7)(0.7)(0.4)(1.0)MeV,
(54)

where the errors are statistical, chiral, finite-volume and from the perturbative matching. In the

2010 analysis we obtained the following values in the MS-scheme at 2 GeV:

mu/d(MS,2 GeV) = 3.59(13)(12)(6)(8)MeV, ms(MS,2 GeV) = 96.2(1.5)(0.2)(0.1)(2.1)MeV ,

(55)

where the errors are as above. Although the central values are not directly comparable, we note

that the renormalization error is considerably smaller as a fraction of the mass than the previous
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result. This is mainly due to the reduction of the truncation errors when going from 2 GeV, which

we estimated to be ∼ 2.1% [1], to 3 GeV where the error is ∼ 1.2%. The removal of the O(4)-

symmetry breaking artifacts in our present analysis does not affect the matching systematic as it

was formerly treated by inflating the statistical error.

For completeness we also calculate the ratios of the strange and up/down quark masses:

ms
mu/d

= 27.36(39)(30)(22)(0) , (56)

where the errors are again as above.

In contrast, in our intermediate mass-dependent matching scheme (cf. section VC) we obtain
ms
mu/d

= 27.74(22)(3)(25), which differs from the above due to the small differences between Zl
and Zh on the 24I ensemble set. As we discussed in ref. [1], these quantities are related as

Z24Ih = Z24Il
(
1+ cmΛ2QCD

[
(a24I)2− (a32I)2

])
,

where cm is some coefficient, hence the differences in the quark mass ratios can be considered as

a discretization effect, which we have eliminated by switching to a continuum scheme.

VII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR BK

In this section we present our results for the neutral kaon mixing parameter BK . Continuum re-

sults are obtained by performing chiral/continuum fits over our three ensemble sets following the

strategy outlined in section IV. This analysis extends that in ref [2] through the inclusion of the

32ID ensemble set.

As BK is a scheme-dependent quantity we must perform our fits to renormalized data. We de-

termine the renormalization factors again using variants of the RI/MOM scheme with symmetric

kinematics. We first outline this calculation, then discuss the application of our chiral fitting tech-

niques to this quantity. Finally we present the continuum results in the MS scheme at 3 GeV.

A. Non-perturbative Renormalization Factors

Unlike in the case of the quark mass renormalization, we require renormalization factors for BK
on both the Iwasaki and Iwasaki+DSDR ensemble sets. In this case, the option of calculating

our lattice renormalization factors directly at 3 GeV is not an option since we cannot simulate
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taking the inverse of the Wilson coefficients calculated using eqn. 44. We obtain cMS,3GeV→RGI =

2.876942 and cMS,2GeV→RGI = 2.601219. Applying the former to the results above we find:

m̂ud = 8.77(23)(17)(3)(12)MeV, m̂s = 240.5(4.9)(2.0)(1.2)(2.9)MeV, (57)

where the hat is used to label the RGI values. In the 2010 analysis we obtained

m̂ud = 9.34(34)(31)(16)(21)MeV, m̂s = 250.2(3.9)(0.5)(0.3)(5.5)MeV. (58)

Our new result appears to be consistent with that of the 2010 analysis, but has a renormalization

systematic error that is almost a factor of two smaller by virtue of performing the matching to the

MS scheme at 3 GeV, rather than 2 GeV, at which the perturbation theory is more reliable. For

the up/down quark mass we also see a substantial improvement in the chiral and finite-volume

systematics, resulting from the lowering of the pion mass cut in the fit and the inclusion of the

32ID data. For the strange quark mass, the 32ID data does not have the same effect because

the Iwasaki data were already (after reweighting) at the physical mass, and the light-quark mass

dependence of the kaon is small. The larger chiral and finite-volume systematics on this quantity

likely arise from allowing the scaling parameter Zh, and also to a lesser extent Zl , to differ between

the fit ansätze rather than remaining fixed; this allows the larger changes in the quality of the fit

for the other fitted quantities to influence kaon fit. A similar effect was observed for the lattice

spacings, which we discussed in section VC.

For comparison with the above, the FLAG working group give mud(MS,2 GeV) = 3.43(11)MeV

and ms(MS,2 GeV) = 94(3) MeV [23]. These values were obtained by combining results from the

MILC [25, 38] and HPQCD [39] collaborations, as well as our 2010 analysis results. Converting

to the RGI scheme using the conversion factor given above, these become m̂ud = 8.92(29) MeV

and m̂ud = 245(8) MeV, which both agree very well with our results.

For completeness we also calculate the ratios of the strange and up/down quark masses:

ms
mud

= 27.36(39)(30)(22)(0) , (59)

where the errors are again as above. In contrast, in our intermediate mass-dependent matching

scheme (cf. section VC) we obtain ms
mud = 27.74(22)(3)(25), which differs from the above due to

the small differences between Zl and Zh on the 24I ensemble set. As we discussed in ref. [1], these

quantities are related as

Z24Ih = Z24Il
(
1+ cmΛ2QCD

[
(a24I)2− (a32I)2

])
,
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In the 2010 analysis we obtained:

BK(MS,3 GeV) = 0.529(5)(15)(2)(11) . (70)

This is highly consistent with the result of the present analysis. In our new result we see a large

improvement in the chiral extrapolation systematic, which results from lowering the pion mass cut

to 350 MeV from the 420 MeV used in the previous analysis.

VIII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR THE SOMMER SCALES

In this section we present the results of applying our global fit technique to the Sommer scales, r0
and r1. In ref. [1] we determined continuum values for these parameters using global fits to our

Iwasaki ensemble sets. In this paper we extend these fits to include the 32ID ensemble set and

observe the effect of lowering the pion mass cut. The values of r0 and r1 measured on the 32ID

ensemble sets can be found in section III.

Assuming a linear dependence on the quark masses and a2, we performed our chiral/continuum

fits using the following form:

r1i = cri,0(1+ cA(1)ri,a [a1]2)+ cri,ml m̃
1
l + cri,mh(m̃

1
h−mh0) (71)

on the primary lattice 1.

For convenience, we simultaneously fit both r0 and r1, even though they do not share any common

parameters other than the scaling parameters. The lattice spacings and scaling factors were fixed

to those obtained in the main analysis, with the fits repeated for each of the three chiral ansätze.

For each fit we applied the same cuts as were performed to the data in section V; this corresponds

Ansatz χ2/dof χ2/dof

Uncut Cut

Analytic 1.45(66) 0.141(71)

ChPT 1.47(67) 0.41(40)

ChPTFV 1.47(67) 0.42(40)

TABLE XXIV. Fit ansatze and the associated uncorrelated χ2/dof obtained by fitting to r0 and r1 over the

full data set (second column) and to the cut data set (third column). The upper bounds on the pion mass in

the cut data sets are mπ = 350 MeV for the ChPT and ChPTFV fits and mπ < 260 MeV for the analytic fit.
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1. Systematic Errors

For our central values and statistical errors of our final MS prediction, we follow the 2010 analysis

in taking the results obtained using the SMOM(/q,/q) intermediate scheme, which is best described

by one-loop perturbation theory. Following section V we estimate the finite-volume and chiral

extrapolation systematics on this quantity from the differences between the ChPTFV result (which

we take as our central value) and the ChPT and analytic results respectively. As we propagated

the differences between the lattice spacings through our analysis in section VIIA 4, the aforemen-

tioned systematics on the renormalization factors are automatically included in the differences

above.

The remaining systematic errors are associated with the perturbative conversion into the MS

scheme. The largest of these is the perturbative truncation error. To determine this we again

follow the 2010 analysis strategy of taking the difference between the values of BK in the MS-

scheme at 3 GeV obtained using the SMOM(/q,/q) and SMOM(γµ ,γµ) intermediate schemes,

the latter of which is also well-described by perturbation theory. As discussed in section VIA 5

and above, there are non-perturbative effects associated with the spontaneous chiral symmetry

breaking and the presence of additional energy-scales (ΛQCD, ms, etc.), that contribute to the per-

turbative systematic. In ref. [2] we found that in the non-exceptional schemes these effects are tiny

compared to the truncation systematic, therefore we do not include these effects in our systematic

error budget.

2. Final Results

Using the ChPTFV result in the SMOM(/q,/q) for the central value and statistical error, and obtain-

ing the chiral and finite-volume systematic errors as above, we find:

BK(SMOM(/q,/q),3 GeV) = 0.540(8)(7)(3)(11) . (68)

where the errors are associated with the statistical, chiral, and finite-volume respectively. Convert-

ing this to the MS-scheme at 3 GeV using one-loop perturbation theory we obtain

BK(MS,3 GeV) = 0.535(8)(7)(3)(11) , (69)

where the first three errors are as before, and the final error is that associated with the truncation

of the perturbative series.

  (stat, chiral, finite V, pert. theory)

Some physical results
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