Continuum Light Hadronic Observables from 2+1 flavor DWF QCD

Lattice 2014
Cairns, Australia
June 28, 2012

Robert Mawhinney
Columbia University
RBC and UKQCD Collaborations

Special Acknowledgement to Chris Kelly for performing most of the final data analysis
Recent RBC/UKQCD 2+1 flavor DWF ensembles

m_π (unitary, degenerate quarks) and a^2 for DWF ensembles

2010 analysis
Phys.Rev. D83 (2011) 074508
Phys.Rev. D84 (2011) 014503

2008 analysis

Current analysis uses all 3 ensembles
Improving Domain Wall Fermions via DSDR

- When underlying gauge field changes topology, the DWF modes can extend farther in the fifth dimension.
- This gives a non-perturbative contribution to residual chiral symmetry breaking.
- Becomes problematic at strong coupling.
- Add ratio of determinants of twisted Wilson fermions to suppress these gauge field dislocations.
- Tune to minimize residual mass while still preserving topological ergodicity.

\[
\frac{\det[DW(-M + i\varepsilon_f \gamma^5)\dagger DW(-M + i\varepsilon_f \gamma^5)]}{\det[DW(-M + i\varepsilon_b \gamma^5)\dagger DW(-M + i\varepsilon_b \gamma^5)]} = \prod_i \frac{\lambda_i^2 + \varepsilon_f^2}{\lambda_i^2 + \varepsilon_b^2}
\]

\(\lambda_i\) are eigenvalues of the Hermitian Wilson operator.

- DSDR = Dislocation Suppressing Determinant Ratio.
Force Gradient Integrator (FGI)

- Proposed by Clark and Kennedy. Implemented (and simplified) in CPS by Hantao Yin
- For $16^3 \times 32 \times 16$ volumes, no speed-up compared to $O(\delta\tau^2)$ Omelyan

For larger volumes, where δH grows with volume, force gradient may be helpful

Tests on $48^3 \times 64 \times 16$ with 220 Mev pions using FGI and retuning Hasenbush masses, 184 minutes/accepted configuration went down to 108 minutes/accepted configuration.

For DWF+ID ensembles analyzed here, lattice is $32^3 \times 64 \times 32$. For $m = 0.001$, FGI used with 5 intermediate Hasenbusch preconditioning masses, all at top integration level.
Input Masses, Reweighting Range for Strange Quark

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DWF+I, (2.76 fm)3</th>
<th>DWF+I, (2.75 fm)3</th>
<th>DWF+ID, (4.6 fm)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>am_{res}</td>
<td>0.000666(8)</td>
<td>0.00308(6)</td>
<td>0.001842(7)</td>
</tr>
<tr>
<td>L_s</td>
<td>16</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Lightest input dynamical quark mass (am_l)</td>
<td>0.004</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>Input dynamical heavy quark mass</td>
<td>0.03</td>
<td>0.04</td>
<td>0.045</td>
</tr>
<tr>
<td>$am_s - am_{\text{res}}$ (from fits)</td>
<td>0.0263(9)</td>
<td>0.0336(13)</td>
<td>0.0467(6)</td>
</tr>
</tbody>
</table>
Checking Scaling at Unphysical Masses

- Total light and strange quark masses, using bare quark normalization for 32 DWF+I
- Can check scaling at unphysical quark masses by interpolating/extrapolating data to masses where m_{ll}/m_{hhh} and m_{lh}/m_{hhh} are identical on different ensembles.
Scaling at unphysical light quark mass

Compare
- DWF+I: $1/a = 2.28$ GeV
- DWF+I: $1/a = 1.73$ GeV
(Phys. Rev. D83 (2011) 074508)

Compare
- DWF+I: $1/a = 2.28$ GeV
- DWF+ID: $1/a = 1.37$ GeV
(RBC/UKQCD to appear)

See few percent scaling errors from $1/a = 1.73$ GeV $\rightarrow \infty$, with larger $O(5\%)$ errors from $1/a = 1.37$ GeV
Parameters in DWF+I and DWF+ID Global Fits

- Simultaneous fit to m_{π^2}, m_{K^2}, f_{π}, f_{K}, and m_{Ω}, with m_{π}, m_{K} and m_{Ω} chosen to be quantities without $O(a^2)$ corrections.

- 18 Parameters in SU(2) chiral expansion:

 - m_{π^2} and f_{π}: 8 parameters – 2 LO, 4 NLO, 2O(a^2)
 - m_{K^2} and f_{K}: 6 parameters – 2 LO, 4 NLO, 2O(a^2)
 - m_{Ω}: 1 LO, 1 NLO

- Fits also determine

 - 3 lattice spacings
 - 2 ratios of light quark mass renormalization factors
 - 2 ratios of strange quark mass renormalization factors
 - m_s

- Only use SU(2) ChPT to NLO

- Also do analytic fits to compare with ChPT and to help estimate chiral extrapolation errors
Global Fits to Multiple Ensembles

- Fit $m_{\pi}^2, f_{\pi}, m_{K}^2, f_{K}$ and m_{Ω} to an expansion in powers of a^2 and m_l, including SU(2) logs where appropriate. Examples are

\[
m_{ll}^2 = \chi_l \left[1 + \frac{c_B a^2}{f^2} \right] + \chi_l \cdot \left\{ \frac{16}{f^2} \left(2L_8^{(2)} - L_5^{(2)} \right) + 2\left(2L_6^{(2)} - L_4^{(2)} \right) \right\} \chi_l + \frac{1}{16\pi^2 f^2} \chi_l \log \frac{\chi_l}{\Lambda^2_{\chi}} \right\} \]

\[
f_{ll} = f \left[1 + \frac{c_f a^2}{f^2} \right] + f \cdot \left\{ \frac{8}{f^2} \left(2L_4^{(2)} + L_5^{(2)} \right) \chi_l - \frac{\chi_l}{8\pi^2 f^2} \log \frac{\chi_l}{\Lambda^2_{\chi}} \right\} \right\} \]

- Note different $O(a^2)$ coefficients used for DWF+I and DWF+ID
- Fit all partially quenched data, including SU(2) ChPT finite volume corrections in fit
- Reweight data from simulation m_h to self-consistently determined m_s (Jung)
- Interpolate valence propagators to self-consistently determined m_s
- Use $m_{\pi} m_{K}$ and m_{Ω} set scale.
Degenerate m^2_{π}/m_x versus $m_x = m_y$
NLO + FVglobal fit, physical match point
NLO + FV curves plotted, original data

Degenerate m^2_{π}/m_x versus $m_x = m_y$
NLO + FVglobal fit, physical match point
NLO + FV curves plotted, original data

• Early fits from partial DWF+ID dataset
• Data consistent with chiral logarithms
m_π^2/m_f versus m_f
Chiral Extrapolation for f_π

- DWF+ID ensemble gives results for much smaller quark masses.
- Can drop pion masses above 350 MeV for ChPT and still do fits.
- Can drop pion masses above 260 MeV for analytic fits and still do them.
- ChPT and analytic agree if pion masses below 260 MeV are used.
- f_π now much closer to physical value than with 2010 analysis
Chiral Extrapolation for B_K

- DWF+ID data rise slightly for light quarks
- Factor of 0.906(3) between normalization in graphs of 2010 and current analysis
Some physical results

<table>
<thead>
<tr>
<th>DWF+I (2010 Analysis)</th>
<th>DWF+I and DWF+ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_\pi^{\text{continuum}} = 124(2)(5)\text{ MeV}$</td>
<td>$f_\pi = 127.1(2.7)(0.7)(2.5)\text{ MeV}$,</td>
</tr>
<tr>
<td>$f_K^{\text{continuum}} = 149(2)(4)\text{ MeV}$</td>
<td>$f_K = 152.4(3.0)(0.1)(1.5)\text{ MeV}$,</td>
</tr>
<tr>
<td>$m_{\text{ud}}^{\overline{\text{MS}}}(2\text{ GeV}) = (3.59 \pm 0.21)\text{ MeV}$</td>
<td>$m_{u/d}^{\overline{\text{MS}}, 3\text{ GeV}} = 3.05(8)(6)(1)(4)\text{ MeV}$,</td>
</tr>
<tr>
<td>$m_s^{\overline{\text{MS}}}(2\text{ GeV}) = (96.2 \pm 2.7)\text{ MeV}$</td>
<td>$m_s^{\overline{\text{MS}}, 3\text{ GeV}} = 83.6(1.7)(0.7)(0.4)(1.0)\text{ MeV}$,</td>
</tr>
<tr>
<td>$m_s/m_{\text{ud}} = 26.8(0.8){\text{stat}}(1.1){\text{sys}}$</td>
<td>$m_s/m_{u/d} = 27.36(39)(30)(22)(0)$.</td>
</tr>
<tr>
<td>$\hat{m}_{\text{ud}} = 9.34(34)(31)(16)(21)\text{ MeV}$,</td>
<td>$\hat{m}_{\text{ud}} = 8.77(23)(17)(3)(12)\text{ MeV}$,</td>
</tr>
<tr>
<td>$\hat{m}_s = 250.2(3.9)(0.5)(0.3)(5.5)\text{ MeV}$</td>
<td>$\hat{m}_s = 240.5(4.9)(2.0)(1.2)(2.9)\text{ MeV}$,</td>
</tr>
<tr>
<td>$B_K^{\overline{\text{MS}}, 3\text{ GeV}} = 0.529(5)(15)(2)(11)$</td>
<td>$B_K^{\overline{\text{MS}}, 3\text{ GeV}} = 0.535(8)(7)(3)(11)$ (stat, chiral, finite V, pert. theory)</td>
</tr>
</tbody>
</table>
RBC/UKQCD 2+1 flavor DWF ensembles

Thermalizing on BNL BGQ

T=0 ensemble as part of finite T DWF with HotQCD

Proposed

Thermalizing on BNL BGQ