Neutral *B* mixing The Standard Model and Beyond E. Freeland, C. Bouchard, C. Bernard, A.X. El-Khadra, E. Gamiz,

A.S. Kronfeld, J. Laiho, and R.S. Van de Water for the Fermilab Lattice and MILC Collaborations

Neutral B mixing

In the Standard Model, B_q^0 mixing is suppressed

- loop process,
- diagram with m_t dominates,
- but is Cabibbo suppressed

 \Rightarrow "Relatively" easy for new physics to cause observable effects.

Matrix Elements

Operators are

$$\begin{array}{l}
\mathcal{O}_{1} = (\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}) (\bar{b}^{\beta} \gamma_{\mu} L q^{\beta}) \\
\mathcal{O}_{2} = (\bar{b}^{\alpha} L q^{\alpha}) (\bar{b}^{\beta} L q^{\beta}) \\
\mathcal{O}_{3} = (\bar{b}^{\alpha} L q^{\beta}) (\bar{b}^{\beta} L q^{\alpha}) \\
\mathcal{O}_{4} = (\bar{b}^{\alpha} L q^{\alpha}) (\bar{b}^{\beta} R q^{\beta})
\end{array}$$

 $\mathcal{O}_5 = (\bar{b}^{\alpha} L q^{\beta}) \; (\bar{b}^{\beta} R q^{\alpha})$

BSM

Matrix Elements

$$\mathcal{H}_{\text{eff}} = \sum_{i=1}^{5} C_i \mathcal{O}_i$$

Operators are

$$\mathcal{O}_{1} = (\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}) (\bar{b}^{\beta} \gamma_{\mu} L q^{\beta})$$
$$\mathcal{O}_{2} = (\bar{b}^{\alpha} L q^{\alpha}) (\bar{b}^{\beta} L q^{\beta})$$
$$\mathcal{O}_{3} = (\bar{b}^{\alpha} L q^{\beta}) (\bar{b}^{\beta} L q^{\alpha})$$
$$\mathcal{O}_{4} = (\bar{b}^{\alpha} L q^{\alpha}) (\bar{b}^{\beta} R q^{\beta})$$
$$\mathcal{O}_{5} = (\bar{b}^{\alpha} L q^{\beta}) (\bar{b}^{\beta} R q^{\alpha})$$

Common parametrization $\langle \bar{B}_q^0 | \mathcal{O}_i(\mu) | B_q^0 \rangle \propto f_{B_q}^2 B_i(\mu)$

Experiment and SM: ΔM_q

Our ability to constrain $|V_{tb}V_{tq}^*|^2$ is limited by $\langle \bar{B}_q^0 | \mathcal{O}_1(\mu) | B_q^0 \rangle$.

"Tension" in the CKM matrix.

Lenz et al., arXiv: 1203:0238; Laiho et al. PhysRevD. 81, 034503, and end-of-2011 update

Experiment and SM: ΔM_q

experiment

want

lattice

Experiment and SM: ΔM_q

- Some (lattice) errors cancel in the ratio of matrix elements,
- In CKM matrix fits, use of ξ can aid in minimizing correlations between lattice inputs.

Experiment and SM:

Recent experimental results are putting focus on $\Delta\Gamma$.

(Lenz et al., arXiv:1203.0238; Haisch, Moriond 2012)

 $\Delta \Gamma_q = \left[G_1 \left(\langle \bar{B}_q^0 | \mathcal{O}_1(\mu) | B_q^0 \rangle + G_3 \left(\langle \bar{B}_q^0 | \mathcal{O}_3(\mu) | B_q^0 \rangle \right) \right] \cos \phi_q + O(1/m_b, \alpha_s)$

dominates

also needed

Lenz, Nierste JHEP 0706:072, 2007 hep-ph/0612167 Beneke, Buchalla, Dunietz, PRD 54:4419, 1996, Erratum-ibid.D 83 119902 (2011); hep-ph/9605259v1

 $\Delta \Gamma_{\alpha}$

Experiment and SM: $\Delta \Gamma_q$

Recent experimental results are putting focus on $\Delta\Gamma$.

(Lenz et al., arXiv:1203.0238; Haisch, Moriond 2012)

$$\Delta\Gamma_q = \left[G_1 \ \langle \bar{B}_q^0 | \mathcal{O}_1(\mu) | B_q^0 \rangle + G_3 \ \langle \bar{B}_q^0 | \mathcal{O}_3(\mu) | B_q^0 \rangle \right] \cos\phi_q + O(1/m_b, \alpha_s)$$

$$\Delta\Gamma/\Delta M$$
 yields $\langle \mathcal{O}_3 \rangle / \langle \mathcal{O}_1 \rangle$
 $\mathcal{O}_R \equiv \mathcal{O}_2 + \mathcal{O}_3 + (1/2)\mathcal{O}_1$ useful for estimating $1/m_b$ errors.

Experiment and BSM: ΔM_q

Including BSM contributions, ΔM_q takes the generic form above.

Lattice values of (matrix elements of) \mathcal{O}_1 through \mathcal{O}_5 are needed to check that a given BSM model is consistent with experiment.

Status of Lattice

FNAL-MILC $\xi = 1.268(63)$ 5.0%

arXiv: 1205.7013, submitted to PRD

Source of uncertainty	Error (%)
Statistics \oplus light-quark disc. \oplus chiral extrapolation	3.7
Mixing with wrong-spin operators	3.2
Heavy-quark discretization	0.3
Scale uncertainty (r_1)	0.2
Light-quark masses	0.5
One-loop matching	0.5
Tuning κ_b	0.4
Finite volume	0.1
Mistuned coarse u_0	0.1
Total Error	5.0

 HPQCD
 Gamiz et al., Phys.Rev.D80:014503, 2009, arXiv:0902.1815

 $\xi = 1.258(33)$ 2.6%

 $f_{B_d}\sqrt{\hat{B}_{B_d}} = 216(15)$ MeV
 6.8%

 $f_{B_s}\sqrt{\hat{B}_{B_s}} = 266(18)$ MeV
 6.9%

RBCAlbertus et al., Phys.Rev.D82:014505, 2010, arXiv:1001.2023 $\xi = 1.13(12)$ 11%domain-wall test calculation; one, 0.11 fm, lattice spacing

Status of Lattice: $\mathcal{O}_{1...5}$

Quenched: Becirevic et al., JEHP 0204 (2002) 0250

Two ensembles: $\mathcal{O}_{2,3}$ E. Dalgic et al., PRD76:011501, 2007

relim FNAL-MILC: Lattice 11 Proceedings (Dec 2011), arXiv:1112:5642

	В		B_s^0		
$[GeV^2]$	BBGLN	BJU	BBGLN	BJU	
$f_{B_q}^2 B_{B_q}^{(1)}$	0.0411(75)		0.0559(68)		
$f_{B_q}^2 B_{B_q}^{(2)}$	0.0574(92)	0.0538(87)	0.086(11)	0.080(10)	
$f_{B_q}^2 B_{B_q}^{(3)}$	0.058(11)	0.058(11)	0.084(13)	0.084(13)	
$f_{B_q}^2 B_{B_q}^{(4)}$	0.093(10)		0.135(15)		
$f_{B_q}^2 B_{B_q}^{(5)}$	0.127(15)		0.178(20)		

Estimated 9 to 6% on \mathcal{O}_1 f_{B_q}

Details of Our Calculation

Previous vs current analysis

Ensembles

- more ensembles
- higher statistics
- smaller lattice spacing
- smaller light-quark mass
- Results
 - full set of matrix elements
 - bag parameters in conjunction with f_B analysis
 - able to do all ratios and combinations
- Use complete ChiPT expression
 - This alone improves the error on ξ from 5.0% to 3.8%.

(Ethan Neil's talk)

Analysis Overview

- Generate two- and three-points correlator data.
- Fit 2pt+3pt correlators simultaneously for each meson.
- Renormalize & match the matrix elements.
- Do a chiral and continuum extrapolation for each matrix element.

Actions and Ensembles

MILC (asqtad) gauge configurations

- 2+1 asqtad sea quarks,
- tadpole improved gluons
- m_l/m_s from 0.4 to 0.05

light valence quark

- staggered action
- mass from $> m_s$ to 0.05 m_s .

heavy valence quark

- improved Wilson action
- Fermilab interpretation

- > ~2000 configurations
- > ~1000 configurations
- ~500 configurations
 - analyzed
 - partially analyzed

Actions and Ensembles

MILC (asqtad) gauge configurations

- 2+1 asqtad sea quarks,
- tadpole improved gluons
- m_l/m_s from 0.4 to 0.05

> ~2000 configurations

- ~1000 configurations
- ~500 configurations
 - analyzed
 - partially analyzed

Actions and Ensembles

MILC (asqtad) gauge configurations

- 2+1 asqtad sea quarks,
- tadpole improved gluons
- m_l/m_s from 0.4 to 0.05

> ~2000 configurations

- > ~1000 configurations
- ~500 configurations

analyzed

partially analyzed

Three-points

$$C^{2\text{pt}}(t) = \sum_{m} \left[Z_m^2 e^{-E_m t} + (-1)^{(t+1)} (Z_m^p)^2 e^{-E_m^p t} \right]$$

$$C^{3\text{pt}}(t_1, t_2) = \sum_{m,n} \left[Z_m Z_n \langle \mathcal{O} \rangle_{mn} e^{-E_m t_1} e^{-E_n t_2} + Z_m^p Z_n \langle \mathcal{O} \rangle_{mn}^p (-1)^{t_1} e^{-E_m^p t_1} e^{-E_n t_2} + Z_m Z_n^p \langle \mathcal{O} \rangle_{mn}^p (-1)^{t_1} e^{-E_m t_1} e^{-E_n^p t_2} + Z_m^p Z_n^p \langle \mathcal{O} \rangle_{mn}^{pp} (-1)^{t_1 + t_2} e^{-E_m^p t_1} e^{-E_n^p t_2} \right]$$

- simultaneous fit of two-point + three-point;
- constrains energies and two-point amplitudes
- use constrained curve fitting

Renormalization and Matching

Operators mix under renormalization (even in the continuum). E.g.

$$\langle \mathcal{O}_1 \rangle^R = (1 + \alpha_s \zeta_{11}) \langle \mathcal{O}_1 \rangle + \alpha_s \zeta_{12} \langle \mathcal{O}_2 \rangle$$

 ζ_{ij} are calculated using 1-loop perturbation theory.

We use the "V" scheme as implemented by Q. Mason et al. with 4-loop running.

$$\alpha_s = \alpha_{\rm v}(2/a)$$

Q. Mason et al. [HPQCD Collaboration], Phys. Rev. Lett. **95**, 052002 (2005) hep-lat/0503005

T. van Ritbergen et al., Phys. Lett. B 400, 379 (1997) hep-ph/9701390

Status: ChiPT

We use SU(3), partially-quenched, heavy-meson, staggered ChiPT continuum, PQ: Detmold and Lin, aXiv:0612028, hep-lat, 2006

Claude Bernard's talk

With staggered light quarks, matrix elements of wrong-spin operators appear in the ChiPT.

Because the five matrix elements $\langle O_{1...5} \rangle$ form a complete basis, wrong-spin contributions can be written in terms of them.

- Mixing occurs: $\langle \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \rangle \langle \mathcal{O}_3 \rangle$ and $\langle \mathcal{O}_4 \rangle \langle \mathcal{O}_5 \rangle$
- No new LEC's are introduced.

Status: ChiPT

E.g.

$$\langle \overline{B}_{q}^{0} | \mathcal{O}_{1}^{q} | B_{q}^{0} \rangle = \beta_{1} \left(1 + \frac{\mathcal{W}_{q\overline{b}} + \mathcal{W}_{b\overline{q}}}{2} + \mathcal{T}_{q} + \mathcal{Q}_{q} + \tilde{\mathcal{T}}_{q}^{(a)} + \tilde{\mathcal{Q}}_{q}^{(a)} \right)$$

$$+ (2\beta_{2} + 2\beta_{3})\tilde{\mathcal{T}}_{q}^{(b)} + (2\beta_{2}' + 2\beta_{3}')\tilde{\mathcal{Q}}_{q}^{(b)}$$

$$+ \text{analytic terms}$$
wrong-spin

contributions

Mixing occurs.

L~

No new LEC's are introduced.

We will do a simultaneous fit for each set of mixed operators.

FNAL-MILC $\xi = 1.268(63)$ 5.0%

arXiv: 1205.7013, submitted to PRD

Source of uncertainty	Error (%)
Statistics \oplus light-quark disc. \oplus chiral extrapolation	3.7
Mixing with wrong-spin operators	3.2
Heavy-quark discretization	0.3
Scale uncertainty (r_1)	0.2
Light-quark masses	0.5
One-loop matching	0.5
Tuning κ_b	0.4
Finite volume	0.1
Mistuned coarse u_0	0.1
Total Error	5.0

Conclusion

 $\xi = 1.268(63)$ arXiv: 1205.7013

- nearly done with three-point analysis
 fourteen ensembles across four lattice spacings
- corrected chiral form exists; extrapolation remains to be done
- results will include:
 - ♦ complete set (5) of matrix elements and bag parameters
 - ratios ξ and $\langle \mathcal{O}_3 \rangle / \langle \mathcal{O}_1 \rangle$ and the combination $\langle \mathcal{O}_R \rangle$
- *★* "half-way point" (Lattice 11, arXiv:1112:5642): *♦* error on f_{Bq} √ Â_{Bq} 9 to 6% (perturbation theory, continuum-ChiPT extrap.) *♦* Errors will be smaller for full-data set analysis.

Backup Slides

Status of Lattice: $\mathcal{O}_{1...5}$

FNAL-MILC: Lattice 11 Proceedings (Dec 2011), arXiv:1112:5642

Source of Error [%]	$\langle \mathcal{O}_i \rangle$
scale (r_1)	3
κ_b tuning	4
light-quark masses	1
heavy-quark discretization	4
one-loop matching	8
finite-volume effects	1
subtotal	10

	Source of Error [%]	$\langle \mathcal{O}_1 angle$	$\langle \mathcal{O}_2 \rangle$	$\langle \mathcal{O}_3 \rangle$	$\langle \mathcal{O}_4 angle$	$\langle \mathcal{O}_5 \rangle$	
B_d^0	statistical + some systematic	8.6	6.8	16	4.3	5.5	
	chiral-continuum truncation	12	11	3.3	0.2	4.4	
B_s^0	statistical + some systematic	6.7	4.6	10	2.5	3.4	
	chiral-continuum truncation	1.8	6.6	4.5	1.6	3.7	

9 to 6% on \mathcal{O}_1 $f_{B_q} \sqrt{\hat{B}_{B_q}}$

ChiPT systematic

Experiment and Lattice: ΔM_q

 $\Delta M_d = 0.507 \pm 0.003 (\text{stat}) \pm 0.003 (\text{sys}) \text{ ps}^{-1} \text{ pDG, J.Phys G37, 1 (2010)}$ $\Delta M_s = 17.77 \pm 0.10 (\text{stat}) \pm 0.07 (\text{sys}) \text{ ps}^{-1} \text{ CDF, PRL 97, 242003 (2006)} (\text{LHCb-CONF-2011-050: 17.73(5)})$

Our ability to constrain
$$|V_{tb}V_{tq}^*|^2$$
 is limited by $\langle \bar{B}_q^0 | \mathcal{O}_1(\mu) | B_q^0 \rangle$.

"Tension" in the CKM matrix.

Lenz et al., arXiv: 1203:0238; Laiho et al. PhysRevD. 81, 034503, and end-of-2011 update

Experiment and Lattice: $\Delta\Gamma_q$

 $\frac{\Delta \Gamma_d}{\Gamma_d} = 0.010 \pm 0.037$ HFAG/PDG 2011; BaBar, DELPHI

 $\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1}$ $\Delta \Gamma_s = (0.163 \pm 0.065) \text{ ps}^{-1}$

LHCb 1 fb⁻¹, Moriond 2012 (0.37 fb⁻¹ arXiv:1112.3183)

D0 8 fb⁻¹, arXiv 1109.3166

Recent LHCb results are putting focus on $\Delta\Gamma$!

A scenario with new physics in $\Delta \Gamma_s$ yields a better fit to current data than a scenario with new physics in ΔM_s .[‡] (Haisch, Moriond 2012) [‡]Specifically, NP in Γ_{12} versus M_{12} .

"We introduce a fourth scenario with NP in both $M_{12}^{d,s}$ and $\Gamma_{12}^{d,s}$, which can accommodate all data."

Experiment and Lattice: $\Delta\Gamma_q$

$$\Delta \Gamma_q = f_{B_q}^2 \left[G_1 B_{1,q} + G_3 B_{3,q} \right] \cos \phi_q + O(1/m_b, \alpha_s)$$

green band = theory constraint on new physics

Improved matrix elements may improve this band.

L. Sabato, Lake Louise 2012

Cross-checks

- We compare energies computed from 2pts to energies from the 2pt+3pt fits.
- Two people fit $\langle \mathcal{O}_3 \rangle$.
- ◆ We use N=2,4,6 results to verify the plateau.

