Chiral extrapolation of matrix elements of BSM kaon operators

Jon A. Bailey, Hyung-Jin Kim, Weonjong Lee (SNU) Stephen R. Sharpe (UW)

Phys.Rev. D85 (2012) 074507 [arXiv:1202.1570 [hep-lat]]

Outline

- Motivation & Background
- Technical details
- Results & Outlook

Motivation

 BSM theories lead to kaon mixing operators with Dirac structures which differ from those in the SM

$$O_1 = \bar{s}^a \gamma_\mu (1 - \gamma_5) d^a \bar{s}^b \gamma_\mu (1 - \gamma_5) d^b$$

SM " B_K operator"

$$O_{2} = \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1-\gamma_{5})d^{b}$$

$$O_{3} = \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1-\gamma_{5})d^{a}$$

$$O_{4} = \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1+\gamma_{5})d^{b}$$

$$O_{5} = \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1+\gamma_{5})d^{a}$$

New operators induced by integrating out heavy BSM particles, e.g. SUSY partners, KK modes,...

- ΔM_{K} and ϵ_{K} can place strong constraints on parameters of BSM theories (complementary to LHC)
- Need non-perturbative matrix elements of operators

Background

• Matrix elements of new operators should be <u>easier</u> to calculate than B_K since not chirally suppressed

$$O_{1} = \bar{s}^{a} \gamma_{\mu} (1 - \gamma_{5}) d^{a} \bar{s}^{b} \gamma_{\mu} (1 - \gamma_{5}) d^{b} \quad \text{``LL'' \Rightarrow matrix elements } \sim M_{\mathsf{K}^{2}}$$

$$O_{2} = \bar{s}^{a} (1 - \gamma_{5}) d^{a} \bar{s}^{b} (1 - \gamma_{5}) d^{b}$$

$$O_{3} = \bar{s}^{a} (1 - \gamma_{5}) d^{b} \bar{s}^{b} (1 - \gamma_{5}) d^{a}$$

$$O_{4} = \bar{s}^{a} (1 - \gamma_{5}) d^{a} \bar{s}^{b} (1 + \gamma_{5}) d^{b}$$

$$O_{5} = \bar{s}^{a} (1 - \gamma_{5}) d^{b} \bar{s}^{b} (1 + \gamma_{5}) d^{a}$$

$$Matrix elements finite in SU(3) chiral limit$$

- Level of accuracy required at present less than for B_K
- Straightforward task for lattice QCD

Background

 In fact, plan to switch soon to the basis used in most continuum calculations (e.g. Buras and collaborators)

$$\begin{split} O_{2} &= \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1-\gamma_{5})d^{b} & \text{Unchanged} \\ O_{3} &= \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1-\gamma_{5})d^{a} \longrightarrow [\bar{s}^{a}\sigma_{\mu\nu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\sigma_{\mu\nu}(1-\gamma_{5})d^{b}] \\ O_{4} &= \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1+\gamma_{5})d^{b} & \text{Unchanged} \\ O_{5} &= \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1+\gamma_{5})d^{a} \longrightarrow [\bar{s}^{a}\gamma_{\mu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\gamma_{\mu}(1+\gamma_{5})d^{b}] \end{split}$$

• ChPT results presented here apply also to new basis

SWME calculation

- As part of our B_K project, we have also calculated the necessary bare matrix elements of the BSM operators
- Matching factors given to I-loop by [Kim,Lee,SS PRDII]
- Need NLO chiral forms to do chiral/continuum extrapolation--these are provided here
 - * Use mixed-action rooted partially quenched staggered chiral perturbation theory both for SU(3) and SU(2) cases
 - Here Bonus: provide continuum PQ results---only available previously in unquenched SU(3) case [Becirevic & Villadoro, PRD04]
- First numerical results presented here by H.-J. Kim

B-parameters

• B-parameters cancel many lattice systematics, renormalization scale dependence & chiral logs

$$\begin{array}{l} O_{2} = \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1-\gamma_{5})d^{b} \\ O_{3} = \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1-\gamma_{5})d^{a} \\ O_{4} = \bar{s}^{a}(1-\gamma_{5})d^{a}\bar{s}^{b}(1+\gamma_{5})d^{b} \\ O_{5} = \bar{s}^{a}(1-\gamma_{5})d^{b}\bar{s}^{b}(1+\gamma_{5})d^{a} \end{array} \right\} \begin{array}{l} B_{j}(\mu) = \frac{\langle \overline{K}_{0}|O_{j}(\mu)|K_{0}\rangle}{N_{j}\langle \overline{K}_{0}|\bar{s}^{a}\gamma_{5}d^{a}(\mu)|0\rangle\langle 0|\bar{s}^{b}\gamma_{5}d^{b}(\mu)|K_{0}\rangle} \\ (N_{2},N_{3},N_{4},N_{5}) = (5/3,-1/3,-2,-2/3) \end{array}$$

Denominator does not vanish in chiral limit (unlike for B_K)

$$\langle \overline{K}_0 | \bar{s}\gamma_5 d(\mu) | 0 \rangle \langle 0 | \bar{s}\gamma_5 d(\mu) | K_0 \rangle = -\left(\frac{f_K M_K^2}{m_d(\mu) + m_s(\mu)}\right)^2$$

Outline

- Motivation & Background
- Technical details
- Results & Outlook

Staggered complications

- Valence fermions (HYP-smeared) have extra tastes
 - \star Fierz rearrangement differs from continuum, so have to match Wick contractions
 - ★ Requires valence S_1 , S_2 , D_1 , D_2 (upper-case \Rightarrow fields with 4 tastes)
 - $\texttt{H} \quad \textbf{Choose operators with Goldstone taste } (\xi_5)$
- Sea quarks (asqtad) are rooted
 - ★ Use standard SChPT prescription for rooting [Bernard, Aubin&Bernard]
 - \star Mixed action introduces additional terms in taste-singlet propagators
- Taste-breaking implies extensive operator mixing
 - \star Due to use of perturbative matching and through discretization effects

Staggered complications

- Valence fermions (HYP-smeared) have extra tastes
 - \star Fierz rearrangement differs from continuum, so have to match Wick contractions
 - ★ Requires valence S₁, S₂, D₁, D₂ (upper-case \Rightarrow fields with 4 tastes)
 - \star Choose operators with Goldstone taste (ξ_5)
- Sea quarks (asqtad) are rooted
 - ★ Use standard SChPT prescription for rooting [Bernard, Aubin&Bernard]
 - \star Mixed action introduces additional terms in taste-singlet propagators
- Taste-breaking implies extensive operator mixing
 - \star Due to use of perturbative matching and through discretization effects

All these were dealt with for B_K in [Van de Water & SS, SWME 10] Extension to new operators relatively straightforward

Example:

 $O_2 = \bar{s}^a (1 - \gamma_5) d^a \bar{s}^b (1 - \gamma_5) d^b \quad \bigstar$

$$\begin{split} \bar{S}_{1}^{a}(\mathbf{1}\otimes\xi_{5})D_{1}^{a}\ \bar{S}_{2}^{b}(\mathbf{1}\otimes\xi_{5})D_{2}^{b} \\ + \\ \bar{S}_{1}^{a}(\gamma_{5}\otimes\xi_{5})D_{1}^{a}\ \bar{S}_{2}^{b}(\gamma_{5}\otimes\xi_{5})D_{2}^{b} \\ -\frac{1}{2} \bigg(\bar{S}_{1}^{a}(\mathbf{1}\otimes\xi_{5})D_{1}^{b}\ \bar{S}_{2}^{b}(\mathbf{1}\otimes\xi_{5})D_{2}^{a} \\ +\bar{S}_{1}^{a}(\gamma_{5}\otimes\xi_{5})D_{1}^{b}\ \bar{S}_{2}^{b}(\gamma_{5}\otimes\xi_{5})D_{2}^{a} \\ -\sum_{\mu<\nu}\bar{S}_{1}^{a}(\gamma_{\mu}\gamma_{\nu}\otimes\xi_{5})D_{1}^{b}\ \bar{S}_{2}^{b}(\gamma_{\mu}\gamma_{\nu}\otimes\xi_{5})D_{2}^{a} \bigg) \end{split}$$

[Taking matrix elements between kaons with appropriate tastes]

Generically: $O_j^{\text{LAT}} \cong O_j^{PQ} + \mathcal{O}\left(\frac{\alpha}{4\pi}\right) [\text{other taste ops}] + \mathcal{O}\left(\alpha^2, a^2\right) [\text{various taste ops}]$

Outline of steps

Outline of steps

Outline of steps

Contributing diagrams

Quark-line diagrams

Outline

- Motivation & Background
- Technical details
- Results & Outlook

Results

$$\begin{array}{c} O_2 = \bar{s}^a (1 - \gamma_5) d^a \bar{s}^b (1 - \gamma_5) d^b \\ O_3 = \bar{s}^a (1 - \gamma_5) d^b \bar{s}^b (1 - \gamma_5) d^a \end{array} \end{array} \begin{array}{c} \text{Differ only in color structure} \Rightarrow \\ \text{same form in ChPT} \end{array} \\ \begin{array}{c} O_4 = \bar{s}^a (1 - \gamma_5) d^a \bar{s}^b (1 + \gamma_5) d^b \\ O_5 = \bar{s}^a (1 - \gamma_5) d^b \bar{s}^b (1 + \gamma_5) d^a \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \text{Differ only in color structure} \Rightarrow \\ \text{same form in ChPT} \end{array}$$

General form of NLO result (for SU(3) and SU(2) cases):

Results

$$\begin{array}{c} O_2 = \bar{s}^a (1 - \gamma_5) d^a \bar{s}^b (1 - \gamma_5) d^b \\ O_3 = \bar{s}^a (1 - \gamma_5) d^b \bar{s}^b (1 - \gamma_5) d^a \end{array} \right\} \begin{array}{c} \text{Differ only in color structure} \Rightarrow \\ \text{same form in ChPT} \end{array} \\ O_4 = \bar{s}^a (1 - \gamma_5) d^a \bar{s}^b (1 + \gamma_5) d^b \\ O_5 = \bar{s}^a (1 - \gamma_5) d^b \bar{s}^b (1 + \gamma_5) d^a \end{array} \right\} \begin{array}{c} \text{Differ only in color structure} \Rightarrow \\ \text{same form in ChPT} \end{array}$$

General form of NLO result (for SU(3) and SU(2) cases):

SU(3) Chiral logs (N_f=2+1)

$$\delta B_{j}^{\log} = \frac{1}{(4\pi f)^{2}} \left[\frac{1}{16} \sum_{B} \left\{ 2\ell(M_{K,B}^{2}) - 2M_{K,B}^{2}\tilde{\ell}(M_{K,B}^{2}) \pm \ell(M_{xx,B}^{2}) \pm \ell(M_{yy,B}^{2}) \right\} \\ \pm \frac{I_{\eta} + I_{x} + I_{y}}{3} \right] \\ + \underset{\text{sign for } B_{2} \& B_{3}}{+ \underset{\text{sign for } B_{4} \& B_{5}}$$

Chiral log functions: $\ell(X) = X \ln\left(\frac{X}{\mu^2}\right), \qquad \tilde{\ell}(X) = -\ln\left(\frac{X}{\mu^2}\right) - 1$

In, Ix & Iy depend on taste-singlet masses: $M_{xx,I}, M_{yy,I}, M_{uu,I}, M_{ss,I} \& M_{\eta,I}$

- Completely predicted in terms of f and masses of valence-valence and sea-sea "pions"
 - Great simplification compared to B_K where 13 additional (unknown) LECs enter into SU(3) chiral logs, because LO matrix element is chirally suppressed
- Use of mixed action has NO impact on form

- Completely predicted in terms of f and masses of valence-valence and sea-sea "pions"
- Use of mixed action has NO impact on form
- Overall sign of chiral log flips between B_{2,3} and B_{4,5}
- Result for $B_{2,3}$ identical to that for B_K !

Silver & Gold

[Becirevic & Villadoro]: B₂/B₃ and B₄/B₅ have no
 NLO chiral logs---"golden" for chiral extrapolation

* Terminology from continuum SU(3) ChPT

 \star Holds also for PQ SChPT and for both SU(3) and SU(2) cases

- New: B₂xB₄ is golden in SU(2) ChPT (only "silver" in SU(3) case [partial cancellation of logs])
- New: B₂/B_K is golden in SU(2) ChPT
- Using golden combinations is particularly important for a staggered calculation, since it removes an important source of taste breaking
 - \star Will use in SWME numerical calculation

Numerical example (B_{2,3,K})

SChPT predicts significantly less curvature than in continuum

Numerical example (B_{2,3,K})

More curvature predicted on the finer lattice

Summary

- SChPT NLO calculation extended to BSM Δ S=2 ops
- In SU(2) case, all chiral logs are related to those in B_K
- Appropriate ratios/products cancel chiral logs, which should simplify chiral extrapolations (particularly for staggered fermions, since taste-breaking reduced)
- In continuum limit, results give previously unavailable PQ SU(3) and SU(2) expressions (useful for DWF)