BSM Neutral Kaon Mixing from $n_f = 2 + 1$ Domain Wall fermions

P. A. Boyle, N. Garron, R. J. Hudspith for the RBC-UKQCD Collaborations

Lattice 2012, Cairns, Australia

Neutral kaon mixing

In the Standard Model, $K^0 - \bar{K}^0$ mixing dominated by box diagrams with W exchange, e.g.

Factorise the non-perturbative contribution into

$$\langle \bar{\mathcal{K}}^0 | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | \mathcal{K}^0 \rangle = \frac{8}{3} F_{\mathcal{K}}^2 M_{\mathcal{K}}^2 \mathcal{B}_{\mathcal{K}}(\mu) \qquad \text{w} / \mathcal{O}_{LL}^{\Delta S=2} = (\bar{s} \gamma_\mu (1 - \gamma_5) d) (\bar{s} \gamma^\mu (1 - \gamma_5) d)$$

Related to ε via CKM parameters, schematically

 $\varepsilon \sim \text{known factors} \times V_{\text{CKM}} \times C(\mu) \times B_{\kappa}(\mu)$

Nicolas Garron (University of Edinburgh)

Standard Model and Beyond

See [F. Gabbiani et al '96]

In the SM, neutral kaon mixing occurs through W-exchanges \rightarrow (V – A) \times (V – A)

$$O_1^{\Delta s=2} = \left(\overline{s}_lpha \, \gamma_\mu (1-\gamma_5) d_lpha
ight) \left(\overline{s}_eta \, \gamma_\mu (1-\gamma_5) d_eta
ight),$$

Beyond the SM, other Dirac structure appear in the generic Hamiltonian $H^{\Delta s=2} = \sum_{i=1}^{5} C_i(\mu) O_i^{\Delta s=2}(\mu)$.

SUSY basis

$$\begin{array}{lll} O_2^{\Delta s=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\alpha)\,(\bar{s}_\beta(1-\gamma_5)d_\beta)\\ O_3^{\Delta s=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\beta)\,(\bar{s}_\beta(1-\gamma_5)d_\alpha)\\ O_4^{\Delta s=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\alpha)\,(\bar{s}_\beta(1+\gamma_5)d_\beta)\\ O_5^{\Delta s=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\beta)\,(\bar{s}_\beta(1+\gamma_5)d_\alpha) \end{array}$$

This work: study of $\langle \bar{K}^0 | O_i^{\Delta s=2} | K^0 \rangle$

See also plenary talks by N. Christ, C. Tarantino

parallel talks by N. Carrasco Vela, E. Freeland, H.-J. Kim, S. Sharpe, ...

Other studies

Quenched

- Clover-Wilson fermions

 [Allton, Conti, Donini, Gimenez, Giusti, Martinelli, Talevig, Vladikas '98]
 [Donini, Gimenez, Giusti, Martinelli '99]
- Overlap fermions
 [Babich, N.G., Hoelbling, Howard, Lellouch, Rebbi '06]

$n_f > 0$, preliminary studies

- $n_f = 2 + 1$ domain wall fermions [Wennekers, RBC-UKQCD '08]
- n_f = 2 twisted mass [Dimopoulos, Frezzotti, Gimenez, Lubicz, Martinelli, Mescia, Papinutto, Rossi, Simula, Vladikas, ETM '10]
- + current studies presented at this conference

Remarks

• Only the parity even part O_i^+ contribute to $\langle \bar{P} | O_i | P \rangle$

They can be expressed in the renormalization basis

$$O_{1}^{+} \leftrightarrow Q_{1} = (\gamma_{\mu} \times \gamma_{\mu} + \gamma_{\mu} \times \gamma_{5})_{\text{unmixed}} \Rightarrow (27, 1) \rightarrow m_{P}^{2}$$
$$(O_{4}^{+}, O_{5}^{+}) \leftrightarrow \begin{pmatrix} Q_{2} &= \gamma_{\mu} \times \gamma_{\mu} - \gamma_{\mu} \times \gamma_{5} \\ Q_{3} &= 1 \times 1 - \gamma_{5} \times \gamma_{5} \end{pmatrix}_{\text{unmixed}} \Rightarrow (8, 8) \rightarrow \text{Cst}$$

$$(O_2^+, O_3^+) \leftrightarrow \left(\begin{array}{cc} Q_4 &=& 1 \times 1 + \gamma_5 \times \gamma_5 \\ Q_5 &=& \sigma_{\mu\nu} \times \sigma_{\mu\nu} \end{array}
ight)_{\mathrm{unmixed}} \Rightarrow (6, \bar{6}) \to \mathrm{Cst}$$

- O₂ and O₃ mix under renormalization, so do O₄ and O₅
- \blacksquare In the chiral limit ${\it O}_1 \to {\it m}_{\it P}^2$ and ${\it O}_{i\geq 2} \to {\rm Cst}$

Normalisation

We want to relate $\langle \bar{K}^0 | H^{\Delta s=2} | K^0 \rangle$ to experimentally measured quantity (e.g $\varepsilon_K, \Delta m_K$), and where

$$H^{\Delta s=2} = \sum_{i=1}^{5} C_i(\mu) O_i^{\Delta s=2}(\mu) \,.$$

 \Rightarrow On the lattice compute $\langle \bar{K}^0 | O_i^{\Delta s=2} | K^0 \rangle$, for $i = 1, \dots 5$.

but the matrix elements are dimension-4 quantities

⇒ Normalise them to obtain dimensionless quantities

For O_1 , we normalise by the VSA

$$\Rightarrow B_{\mathcal{K}} = \frac{\langle \bar{K}^0 | O_1^{\Delta s = 2} | K^0 \rangle}{\langle \bar{K}^0 | O_1^{\Delta s = 2} | K^0 \rangle_{\text{VSA}}} = \frac{\langle \bar{K}^0 | O_1^{\Delta s = 2} | K^0 \rangle}{\frac{8}{3} m_K^2 f_K^2}$$

- *m_K* and *f_K* are well-measured physical quantities
- B_K is finite in the chiral limit
- (Similar functional form at NLO of χ PT in quenched and in unqueched theory [Sharpe '92])

Normalisation (II)

The VSA of the BSM WME are

$$\langle \bar{K}^0 | O_{i \geq 1} | K^0 \rangle \sim |\langle \bar{K}^0 | \bar{s} \gamma_5 d | 0 \rangle|^2 \sim (m_K f_K)^2 (m_K / (m_s + m_d))^2$$

Why introducing the quark masses in the game ?

Different normalisations have been introducde in the literature

we follow [Babich, N.G., Hoelbling, Howard, Lellouch, Rebbi '06]

$$\begin{split} R_{i}^{\mathrm{BSM}}(m_{P}) &= \left[\frac{f_{K}^{2}}{m_{K}^{2}}\right]_{\mathrm{expt}} \left[\frac{m_{P}^{2}}{f_{P}^{2}} \frac{\langle \bar{P}|O_{i}|P \rangle}{\langle \bar{P}|O_{1}|P \rangle}\right]_{\mathrm{latt}} \\ &\xrightarrow{P \to K} \quad \frac{\langle \bar{P}|O_{i}|P \rangle}{\langle \bar{P}|O_{1}|P \rangle} \sim \mathrm{BSM/SM} \end{split}$$

Finite in the chiral limit (and smooth chiral behaviour)

- Cancel systematic errors
- $\blacksquare B_{\mathcal{K}} (\Leftrightarrow \langle \overline{P} | O_1 | P \rangle) \text{ is well known}$
- No need to invoke the PCAC relation, no quark mass, etc

- Fermions: $n_f = 2 + 1$ Domain-Wall. Glue: Iwasaki
- Single lattice spacing $a \sim 0.086 \text{ fm} \leftrightarrow a^{-1} \sim 2.28 \text{ GeV}$, $32^3 \times 64 \times 16 ~(\Rightarrow L \sim 2.8 \text{ fm})$
- Three unitary light quark masses $am = 0.004, 0.006, 0.008 \Rightarrow m_{\pi} \sim 290, 340, 390 \text{ MeV}$
- am_s = 0.03 fixed (physical value ~ 0.028)
- Residual mass $am_{
 m res} \sim 0.00067$

More details can be found in [Aoki et al, RBC-UKQCD '10, arXiv:1012.4178, 1011.0892]

Follow [ArXiv:1012.4178]

Create /Annihilate kaon/antikaon with wall-source at fixed time t_i , t_f

Insert the four-quark operator at time t, and let $t \in [t_i, t_f]$

 \Rightarrow Define

$$c_{i}(t) = \langle \bar{P}(t_{f})O_{i}(t)\bar{P}(t_{i})\rangle \longrightarrow \langle 0|P|\bar{P}\rangle\langle \bar{P}|O_{i}|P\rangle\langle P|P|0\rangle \times \exp(-m_{P}(t_{f}-t_{i}))$$

And compute the ratios

$$\frac{c_i(t)}{c_1(t)} \longrightarrow \frac{\langle \bar{P} | O_i | P \rangle}{\langle \bar{P} | O_1 | P \rangle}$$

Extraction of m_P , f_P from 2-pt functions, done as in [arXiv:1011.0892]

Example for our lightest unitary kaon $am_{
m light}^{val}=am_{
m light}^{sea}=0.004,$ $am_s^{val}=0.03$

Nicolas Garron (University of Edinburgh)

BSM Neutral Kaon Mixing

• Mixing pattern given by the $SU(3)_L \otimes SU(3)_R$ decomposition of the operators

If chiral symmetry is respected the Z matrix is of the form

$$Z = \begin{pmatrix} Z_{11} & & & \\ & Z_{22} & Z_{23} & \\ & Z_{32} & Z_{33} & \\ & & & Z_{44} & Z_{45} \\ & & & Z_{54} & Z_{55} \end{pmatrix}$$

⇒ Domain-Wall disctretisation is a natural candidate ("almost exact" chiral symmetry)

- We perform the NP renormalization à la Rome-Southampton [Martinelli et al '94]
- We use momentum sources [Göckeler et al, QCDSF '98] ⇒ tiny statistical errors
- And twisted boundary condition ⇒ lie on a scaling trajectory [Arthur and Boyle '10]

Original choice of kinematics contains exceptional channels

 \Rightarrow Potentially important IR effects $\sim 1/p^2$

 \Rightarrow can obscure the good chiral properties of the DW fermions

Nice solution: use non-exceptional schemes

for example SMOM $p_1^2 = p_2^2 = (p_1 - p_2)^2$

- ⇒ Better IR behaviour
- \Rightarrow In many cases the perturbative expansion converges faster

See for example [Aoki et al '07, '10, Sturm et al '09, Lehner and Sturm '11]

Exceptional vs non-exceptional

Chirally forbidden mixing matrix elements

Results given in the renormalization basis and in the MOM schemes

Exceptional vs non-exceptional

Chirally forbidden mixing matrix elements

Results given in the renormalization basis and in the MOM schemes

Exceptional vs non-exceptional

Physical mixing matrix elements

Results given in the renormalization basis and in the MOM schemes

Conversion to $\overline{\mathrm{MS}}$

- Conversion factors RI-MOM $\rightarrow \overline{\mathrm{MS}}$ are known at one-loop for the whole basis [Ciuchini et al '93]
- Conversion factors SMOM's $\rightarrow \overline{MS}$ are known at one-loop for the (27, 1) and the (8, 8), for four different SMOM-schemes [Aoki et al '10, Lehner and Sturm '11]
- Bad news: conversion factors for the $(6, \overline{6})$ are not available for non-exceptional scheme

Therefore, for consistency, we use only the RI-MOM scheme.

 Z/Z_A^2 in the renormalization basis

Conversion to $\overline{\mathrm{MS}}$

- Conversion factors RI-MOM \rightarrow $\overline{\rm MS}$ are known at one-loop for the whole basis [Ciuchini et al '93]
- Conversion factors SMOM's $\rightarrow \overline{MS}$ are known at one-loop for the (27, 1) and the (8, 8), for four different SMOM-schemes [Aoki et al '10, Lehner and Sturm '11]
- Bad news: conversion factors for the $(6, \overline{6})$ are not available for non-exceptional scheme

Therefore, for consistency, we use only the RI-MOM scheme.

Z in the SUSY basis

Extrapolation to the physical point

Keep $m_{\text{srange}}^{val} = m_{\text{strange}}^{\text{sea}} = 0.03$ fixed, and extrapolate light quark masses to physical value Keep $m_{\text{strange}}^{val} = 0.025$ fixed, and extrapolate the light quark masses to physical value Interpolate to the physical strange $m_{\text{strange}}^{val} = 0.0273(7)$

Other possibility: use NLO Heavy-meson χ PT [Detmold and Lin '06] (for staggered, see [Bailey, Kim, Lee, Sharpe '12])

BSM Neutral Kaon Mixing

Preliminary results in $\overline{\rm MS}$ at 3 $\,{\rm GeV}$ and error budget (in %)

i	R_i^{BSM}	Bi	stat.	discr.	extr.	NPR	PT	total
2	-15.5(1.7)	0.43 (5)	1.3	1.5	3.8	9.2	4.0	10.9
3	8.9(0.8)	1.25 (11)	1.3	1.5	3.6	4.1	6.2	8.5
4	29.3(2.9)	0.69 (7)	1.6	1.5	4.2	3.0	8.1	9.9
5	6.7(0.9)	0.47 (6)	1.8	1.5	2.8	3.2	12.5	13.3

and we found $B_1 = B_K = 0.517(4)_{\text{stat}}$

(compared to the continuum value $0.529(5)_{stat}(19)_{syst}$ with SMOM-((q, q) [Aoki at al, RBC-UKQCD '10])

N.B. Discretisation errors computed only for B_K

- We are computing BSM contributions to neutral kaon mixing with $n_f = 2 + 1$ Domain-Wall fermions
- Confirm previous quenched study where large ratios non-SM/SM were found
- $\blacksquare~{\rm Errors} \sim 10\%$
- Two dominant sources of errors come from the NPR with exceptional scheme
- Plan to compute the matching factors and add another lattice spacing in collaboration with C.Lehner, A.T.Lytle, C.T.Sachrajda ...
- \blacksquare Expect to reduce the error below $\sim 5\%$

Acknowledgements:

we thank our collaborators of RBC-UKQCD

and the organisers of lattice 2012 !