Lattice 2012

Data Analysis for BSM corrections to Kaon B parameters

Brookhaven National Laboratory

Seoul National University

University of Washington

Hyung-Jin Kim 📣 Boram Yoon, Jon A. Bailey, Weonjong Lee Stephen Sharpe

The 30th International Symposium on Lattice Field Theory, Cairns Convention Centre, Australia

Introduction

Standard Model : *B_K* **parameter**

▷ Important parameter in determining indirect CP violation of neutral K meson($K^0 - \overline{K}^0$).

1/20

Introduction

Beyond Standard Model : B_i parameter(i = 2, 3, 4, 5)

EX) New operators could come from light SUSY particles

(squark, gluinos in supersymmetry model are integrated out).

2/20

Motivation & Background

3/20

BSM corrections to Kaon B parameters in S χ **PT**

- In the BSM, there are additional four fermion operators which contribute to kaon mixing matrix elements.
- Experiments and calculations of hadronic matrix elements can give significant constraints on BSM.
- We calculate these matrix elements using improved staggered fermion.
- To extrapolate to physical d, s quark masses, we use staggered chiral perturbation theory.
- NLO S χ PT technical details will be given here by S. Sharpe.

Analysis Data

Lattices for data generation (Done , Progress)

$a \ (fm)$	am_l/am_s	geometry	ens×meas	ID
0.12	0.01/0.05	$20^3 imes 64$	671 imes 9	C3
0.09	0.0062/0.031	$28^3 imes 96$	995 imes 9	F1
0.06	0.0036/0.018	$48^3 \times 144$	749 imes 9	S 1
0.045	0.0028/0.014	$64^3 \times 192$	753 imes 1	U1

Improved Staggered Fermion(valence: HYP, sea: Asqtad)

Quark masses

$a~({ m fm})$	am_x and am_y		phys. am_d	phys. am_s
0.12	0.005 imes n	with $n = 1, 2,, 10$	0.00212(2)	0.05174(5)
0.09	0.003 imes n	with $n = 1, 2,, 10$	0.00142(2)	0.03523(5)
0.06	0.0018 imes n	with $n = 1, 2,, 10$	0.00102(1)	0.02362(3)
0.045	0.0014 imes n	with $n = 1, 2,, 10$	0.00075(1)	0.01684(2)

Computation of B_{2-5}

NLO B_i parameters on the SXPT (Ref: Phys. Rev. D85, (2012), 074507)

5/20

- General form of NLO expression.
- SU(2) analysis is in progress.
- Because O_2, O_3 (or O_4, O_5) have the same form in χ PT, B_2, B_3 (or B_4, B_5) also have the same form.
- B_2, B_3 results are identical to NLO form for B_K .

Computation of B_{2-5}

1 loop matching formula (Ref: Phys. Rev. D83, (2011), 094503)

Ex) i = 2 matching coefficients

Operator j	b_{2j}	γ_{2j}	$d_{2j}^{ m Cont}$	$d_{2j}^{\mathrm{Lat}}(c)$	$d_{2j}^{\mathrm{Lat}}(d)$	T_{2j}
$\mathcal{O}_{S1}^{\mathrm{Lat}}$	-1/2	6	-59/12	2.70	2.34	-1
$\mathcal{O}_{S2}^{\mathrm{Lat}}$	1	-10	+73/12	-17.80	-14.53	6
$\mathcal{O}_{P1}^{\mathrm{Lat}}$	-1/2	6	-59/12	3.64	3.17	-1
$\mathcal{O}_{P2}^{\mathrm{Lat}}$	1	-10	+73/12	5.42	4.06	-2
$\mathcal{O}_{T1}^{\mathrm{Lat}}$	1/2	-14/3	+29/12	-2.94	-2.52	1
$\mathcal{O}_{T2}^{\mathrm{Lat}}$	0	2/3	-5/4	0.03	0.01	0

Data Analysis for BSM corrections to Kaon B parameters, Hyung-Jin Kim, Lattice 2012

Renorm

SU(2) Chiral Fitting

7/20

Chiral Fitting function

$$B_{j}(NNLO) = c_{1}F_{0}(j) + c_{2}rac{M_{xx,P}^{2}}{\Lambda^{2}} + c_{3}rac{M_{xx,P}^{4}}{\Lambda^{4}}$$

$$F_0(j) = 1 \pm \frac{1}{(4\pi f_2)^2} \left[\frac{-1}{16} \sum_B \ell(M_{xx,B}^2) + \frac{1}{2} \left\{ \ell(M_{xx,I}^2) + (M_{\pi,I}^2 - M_{xx,I}^2) \tilde{\ell}(M_{xx,I}^2) \right\} \right]$$

$$\longrightarrow$$
 + : $j = 2, 3, K$, - : $j = 4, 5$

SU(2) Chiral Fitting

8/20

Fitting Strategies

1. X-Fit

For a given ensemble(fixed a, m_{ℓ}, m_s), fix m_y close to m_s^{phys} . Extrapolate m_x to the physical light quark mass using χ fitting function.

2. Y-Fit

Extrapolate m_y to the physical strange quark mass.

3. Continuum extrapolation

Extrapolate a to continuum limit.

9/20

SU(2) Chiral Fitting: B_2 ($20^3 \times 64$, Diag. Approx.)

10/20

SU(2) Chiral Fitting: B_3 ($20^3 \times 64$, Diag. Approx.)

12/20

SU(2) Chiral Fitting: B_4 ($20^3 \times 64$, Diag. Approx.)

13/20

SU(2) Chiral Fitting: B_5 ($20^3 \times 64$, Diag. Approx.)

Golden Combinations

14/20

Golden combinations for canceling the leading χ logs

 $R_j \equiv \frac{B_2}{B_3}, \ \frac{B_4}{B_5}, \ \frac{B_K}{B_2}, \ \left(B_{2(\text{or }3)} \cdot B_{4(\text{or }5)}\right) \text{ in SU(2) } \chi \text{ fitting}$

SU(2) fitting function for the gold combination

$$R_j^{NNLO}=c_1+c_2rac{M_{xx,P}^2}{\Lambda^2}+c_3rac{M_{xx,P}^4}{\Lambda^4}$$

Gold combination of fitting function is especially important in Staggered χ PT calculation, because it cancels the major effect of taste symmetry breaking!

※ more about the SU(3) and SU(2) cases will be explained in the S. Sharpe's talk!

15/20

SU(2) Chiral Fitting: B_2/B_3 ($20^3 \times 64$, Diag. Approx.)

16/20

SU(2) Chiral Fitting: B_4/B_5 ($20^3 \times 64$, Diag. Approx.)

17/20

SU(2) Chiral Fitting: $B_2 \times B_4$ ($20^3 \times 64$, Diag. Approx.)

18/20

SU(2) Chiral Fitting: B_K/B_2 ($20^3 \times 64$, Diag. Approx.)

Preliminary Result

Preliminary result of B parameters

	Coarse(C3)	Fine(F1)
$B_2 =$	0.6429(10)	0.5820(10)
$B_3 =$	0.7962(13)	0.7271(14)
$B_4 =$	1.1278(20)	1.0999(20)
$B_5 =$	0.9341(17)	0.9310(18)
$B_2/B_3 =$	0.8075(04)	0.8004(03)
$B_4/B_5 =$	1.2073(06)	1.1815(06)
$B_2 \cdot B_4 =$	0.7236(21)	0.6381(17)
$B_K/B_2 =$	1.0219(70)	1.0119(63)
$B_K =$	0.5789(53)	0.5182(42)

Statistical error only Renorm. $\mu a = 1$ 19/20

Future Plan

20/20

- We have fitting results for the BSM B-parameters on MILC coarse, fine and superfine lattice.($20^3 \times 64$, $28^3 \times 96$, $48^3 \times 144$)
- Efficiency of golden combinations is not clear yet.
- Need to do continuum extrapolation, study finite-volume effect.
- Plan to use correlated fits.
- Plan to do alternative analysis based on SU(3) S χ PT.