B and D meson decay constants from 2+1 flavor QCD with improved staggered fermions

Ethan T. Neil (Fermilab) Lattice 2012 for the Fermilab/MILC Collaboration

Motivation

• Leptonic heavy meson decays are sensitive to both strong and weak physics:

- Accurate determination of f_H nonperturbatively (i.e. lattice) is crucial for precise CKM matrix elements
- Aside from determining CKM, decay constants are needed for rare leptonic decays - whether mediated by standard model or by new physics

Calculation overview

- Overlap of heavy meson wavefunction and axial-vector current gives f_H : $\langle 0| \mathscr{A}^{\mu} | H(p) \rangle (M_H)^{-1/2} = i(p^{\mu}/M_H)(f_H\sqrt{M_H}) \equiv i(p^{\mu}/M_H)\phi_H$
- Extract by measuring two-point correlation function between pseudoscalar (PS) and axial-vector, normalize using PS-PS correlators

$$\Phi_2^s(t) = \frac{1}{4} \sum_{a=1}^4 \langle A_a^{4\dagger}(t, \mathbf{x}) \mathcal{O}_a^{(s)}(0) \rangle,$$

$$C_2^{s,s'}(t) = \frac{1}{4} \sum_{a=1}^4 \langle \mathcal{O}_a^{(s)\dagger}(t, \mathbf{x}) \mathcal{O}_a^{(s')}(0) \rangle,$$

- Non-perturbative renormalization factors convert from bare lattice to continuum result for f_H
- Simulations at many quark masses *m* and lattice spacings *a*, fit to staggered chiPT to extrapolate to chiral/continuum limit (and to quantify discretization errors, etc.)

List of ensembles used

$\approx a \; [\text{fm}]$	am_h	am_l	eta	r_1/a	$N_{\rm conf}$ (previous)	$N_{\rm conf}$ (updated)	label
0.045	0.014	0.0028	7.81	7.21		800	А
0.06	0.018	0.0018	7.46	5.31	_	825	В
		0.0025	7.465	5.33	_	800	C
		0.0036	7.47	5.35	_	631	D
		0.0072	7.48	5.40		591	Е
0.09	0.031	0.00155	7.075	3.74		790	F
		0.0031	7.08	3.75	435	1012	G
		0.00465	7.085	3.77	_	983	H
		0.0062	7.09	3.79	557	1934	Ι
		0.0124	7.11	3.86	518	1994	J
0.12	0.050	0.005	6.76	2.74	678	2097	K
		0.007	6.76	2.74	833	2107	L
		0.010	6.76	2.74	592	2256	М
		0.020	6.79	2.82	460	2097	N
0.15	0.0484	0.0097	6.572	2.22	631	631	0

- MILC gauge ensembles, N_f=2+1 asqtad in the sea, clover heavy quarks w/ Fermilab interpretation
- "Previous" shows data analyzed for previous published result [arXiv: 1112.3051; Phys. Rev.
 D85 (114506).]
 - Four time-sources per configuration, evenly spaced

Two-point correlators

• Functional form:

$$\begin{split} C_{ij}(t) &= \sum_{n=0}^{N_X} \left[A_{i,n} A_{j,n} \left(e^{-E_n t} + e^{-E_n (N_t - t)} \right) \\ &- (-1)^t A'_{i,n} A'_{j,n} \left(e^{-E'_n t} + e^{-E'_n (N_t - t)} \right) \right] \end{split}$$
 this analysis

- Note mixing with opposite-parity state
- Point ("d") or smeared ("1S") source/sink for pseudoscalars, "rot" denotes axial vector sink
- Mixed correlators d1S/1Sd to be used for cross-validation

Two-point correlators, continued

- Standard bag of tricks to yield numerically stable two-point fits:
 - Log mapping, to keep fit parameters in physically allowed domain:

$$A_i = \exp(\log(A_i)) \qquad E_i = E_0 + \sum_{k=1}^i \exp(\log(\Delta E_k))$$

- Ground state projection: fit to $C_{\exp}(t) = e^{m_{\text{eff}}t} C(t)$
- Bayesian priors on all fit parameters, included as augmented chi-square:

$$\chi_{aug}^2 = \chi^2 + \sum_{j=1}^{N_{par}} \frac{(a_j - \hat{a}_j)^2}{\hat{\sigma}_j^2}$$

 Example fit shown below (left), full range from [2, Nt/2]. 3 excited states used ("4+4"). Good agreement with standard "plateau" ground-state (right).

Another example, showing stability with addition of more states.
Comparison to "plateau" fit with t_{min}=20 (may not be optimal.)

Renormalization and mass tuning

• From two-point fits, convert to

$$\phi_Q = \sqrt{2} Z_{A_{Qq}^4} A_{A_{Qq}^4} = \sqrt{2} \left(\rho_{A_{Qq}^4} \sqrt{Z_{V_{qq}^4} Z_{V_{QQ}^4}} \right) A_{A_{Qq}^4}$$

- "Mostly non-perturbative" renormalization: factorize axial-current renormalization, determine Z_V non-perturbatively, leftover piece ρ computed in lattice PT. Large cancellation ensures ρ ~1.
- Heavy-fermion mass parameters K tuned by matching kinetic mass M₂ to physical value. Slight difference between simulated K and tuned K, so we have to adjust:

$$\phi_Q \to \phi_Q + \Delta \phi_Q = \phi_Q + \left(\frac{d\phi_Q}{d\kappa}\right) (\kappa_{\rm sim} - \kappa_{\rm tune})$$

• Derivatives are O(10), but mistunings O(10⁻³), so shifts are fairly small.

Chiral/continuum extrapolation

• Fit to rooted staggered chiPT (rSxPT) to extrapolate to continuum and physical quark masses:

 $\phi = \phi^{0} [1 + (\text{chiral logs}) + (\text{NLO analytic}) + (\text{NNLO analytic}) + (\text{LQ discretization}) + (\text{HQ discretization})]$

- Terms included for taste-breaking effects, finite-volume corrections in chiral logs, hyperfine/LQ flavor splitting of heavy-light mesons (details in arXiv: 1112.3051)
- Continuum extrapolation just requires setting all discretization effects (including taste breaking) to zero in the fit. Can use fits to split out and quantify each discretization error.
- NNLO terms found necessary to fit points with valence mass near strange

Chiral fit results

•Updated results (left) vs. previous (right). Horiz. axis not identical but roughly M_{π^2} in both cases.

•All results $N_X=1$, large t_{min} chosen by eye - starting point and basis for comparison with full-range fits

Chiral fit results

•Updated results (left) vs. previous (right). Horiz. axis not identical but roughly M_{π}^2 in both cases.

•All results $N_X=1$, large t_{min} chosen by eye - starting point and basis for comparison with full-range fits

Error budget projection

Source	$f_{D^+}(\mathrm{MeV})$	$f_{D_s}(MeV)$	$f_{B^+}(\mathrm{MeV})$	$f_{B_s}(MeV)$
Statistics	2.3 [1.1]	2.3 [1.1]	3.6 [1.8]	3.4 [1.7]
Heavy-quark disc.	8.2 [3.6]	8.3 [3.6]	3.7 [1.9]	3.8 [2.0]
Light-quark disc.	2.9 [0.7]	1.5 [0.3]	2.5 [0.6]	2.1 [0.5]
Chiral extrapolation	3.2 [1.6]	2.2 [1.1]	2.9 [1.5]	2.8 [1.4]
Heavy-quark tuning	2.8 [2.0]	2.8 [2.0]	3.9 [2.4]	3.9 [2.4]
$Z_{V_{OO}^4}$ and $Z_{V_{qq}^4}$	2.8 [1.4]	3.4 [1.7]	2.6 [1.5]	3.1 [1.9]
u_0 adjustment	1.8 [0]	2.0 [0]	2.5 [0]	2.8 [0]
Other sources	3.8 [3.8]	3.0 [3.0]	3.5 [3.5]	4.8 [4.8]
Total [projected] error	11.3 [6.1]	10.8 [5.6]	8.9 [5.5]	9.5 [6.4]

 Error breakdown from previous published analysis, along with projected improvements here based on known scaling of discretization errors, mass dependence, etc. Overall projected uncertainty ~2-3%.

Conclusion

- Update of previous asqtad B/D decay constant calculation will improve in several directions - ensembles with smaller *a*, lighter mass, more statistics.
 Projected errors roughly 5-6 MeV for the various f_B/f_D.
- In addition, planning determinations of ratios: f_{Bs}/f_B,f_{Ds}/f_D, which are more precise due to cancellations. Cross-ratios f_{Bs}/f_{Ds}, f_B/f_D as well, which can then be combined with e.g. measurement of D decay constants on HISQ (see talk by D. Toussaint, Friday afternoon)
- Finalizing estimation of systematic errors, implementing remaining chiral fit terms (hyperfine splitting mostly), then analysis will be unblinded stay tuned