Lattice calculation of the K_L - K_S mass difference

Jianglei Yu

RBC and **UKQCD** Collaborations

June 29, Lattice 2012

Friday, June 29, 12

Introduction

Lattice four point function

Four point correlator :

 $G(t_f, t_1, t_2, t_i) = \langle \overline{K^0}(t_f) H_W(t_2) H_W(t_1) K^{0\dagger}(t_i) \rangle$

- t_1 - t_i and t_f - t_2 should be sufficiently large to get a kaon
- Fix t_i and t_f , correlator depends only on t_2-t_1
- Refer to this quantity as unintegrated correlator

Integrated Correlator

Integrate the unintegrated correlator over a time interval :

$$\mathscr{A} = \frac{1}{2} \sum_{t_1=t_a}^{t_b} \sum_{t_2=t_a}^{t_b} \langle \overline{K^0}(t_f) H_W(t_2) H_W(t_1) K^{0\dagger}(t_i) \rangle$$

- $t_{f}-t_{b}$ and $t_{a}-t_{i}$ should be sufficiently large to get a kaon
- Fix t_i and t_f , correlator depends only on t_b-t_a
- Refer to this quantity as integrated correlator

After inserting a sum over intermediate states one obtains correlator as a function of integration time interval T :

I.Linear term, the coefficient gives finite volume

approximation to ΔM_K

- 2. Constant term, which is trival
- 3. Exponential decreasing term, come from states $E_n > M_K$
- 4. Exponential increasing term, come from states $E_n < M_K$
- 5. Quadratic term, come from state $E_n = M_K$

We need to do subtraction for 4 and 5 terms

$$\mathscr{A} = N_K^2 e^{-M_K(t_f - t_i)} \left\{ \sum_{n \neq n_0} \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n} \left(-T - \frac{1}{M_K - E_n} + \frac{e^{(M_K - E_n)T}}{M_K - E_n} \right) + \frac{1}{2} \langle \overline{K}^0 | H_W | n_0 \rangle \langle n_0 | H_W | K^0 \rangle T^2 \right\}$$

I. Evaluate integrated correlator

2. Subtract the exponentially increasing π^0 term

 Make ππ state degenerate with Kaon, remove T² term
Calculate mass difference
Add back finite-volume correction term

We need step 3 and 5 to correct finite volume effect

Mass difference from all possible intermediate states are encoded in the coefficient of linear term. In 3 flavor, there will be quadratic divergence short distance contribution to $\Delta M_{\rm K}$. Must introduce charm quark, GIM will remove this divergence.

Effective weak Hamiltonian

The $\Delta S=1$ effective weak Hamiltonian in a 4 flavor theory :

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$

Here we only include current-current operators :

$$Q_1^{qq'} = (\bar{s}_i d_i)_{V-A} (\bar{q}_j q'_j)_{V-A}$$
$$Q_2^{qq'} = (\bar{s}_i d_j)_{V-A} (\bar{q}_j q'_i)_{V-A}$$

All the penguin operators are neglected, since they are highly suppressed because of GIM cancellation

Four types of diagrams

Type 3 and 4 diagrams not included in current calculation

Setup of the calculation

Lattice ensemble :

- 16³×32×16, 2+1 flavor DWF
- Inverse lattice spacing 1.73(3) Gev
- $M_{\pi} = 421$ Mev, $M_{K} = 559$ Mev
- 800 configurations, each separated by 10 time units

- Kaon wall sources at $t_i = 0$ at $t_f = 27$
- Weak Hamiltonian act between $t_a=4$ and $t_b=23$

Unintegrated correlator

$$G(T;t_i,t_f) = N_K^2 e^{-M_K(t_f - t_i)} \sum_n \langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{-(E_n - M_K)T}$$

Here T is the time separation between to weak Hamiltonian

- Separate the Hamiltonian into two parity channel :
 - \bullet Parity conserving channel, long distance effect dominate by π^0 intermediate state
 - \bullet Parity violating channel, long distance effect dominate by $\pi\pi$ intermediate state
- Use various kaon masses

Parity conserving channel

In long distance, correlator dominate by π^0 term :

 $G(T;t_i,t_f) = N_K^2 e^{-M_K(t_f - t_i)} \langle \overline{K^0} | H_W | \pi^0 \rangle \langle \pi^0 | H_W | K^0 \rangle e^{-(E_\pi - M_K)T}$

Parity violating channel

In long distance, correlator dominate by $\pi\pi$ term :

 $G(T;t_i,t_f) = N_K^2 e^{-M_K(t_f - t_i)} \langle \overline{K^0} | H_W | \pi \pi \rangle \langle \pi \pi | H_W | K^0 \rangle e^{-(E_{\pi\pi} - M_K)T}$

We expect to see plateau at long distance :

- No signal at long distance
- Good signal from type 2 diagrams only

Parity violating channel

Type I

Noise behave like π , exponentially increasing noise to signal ratio

The signal from type 2 contractions don't have such noise

Integrated Correlator

Is I Gev charm too heavy ? Quadratic dependence on m_c will be cutoff buy lattice spacing if charm is too heavy. The fitting result suggest we haven't reach that region

Mass difference

- M_{π} = 421 Mev M_{c} = 1 Gev
- Only included statistical error
- Finite volume effect not corrected

$$\Delta M_{K^{exp}} = 3.483(6) \times 10^{-12} \text{ Mev}$$

Conclusions and future plans

- Lattice calculation of ΔM_K is possible :
 - Evaluate four point correlators
 - ✓ Use GIM to remove divergence in short distance
 - \checkmark Remove π exponentially term
 - Use on-shell K $\rightarrow \pi\pi$ kinematics, remove quadratic term from integrated correlator
 - Add finite volume correction term
- Include type 3 and type 4 diagrams in future
- Use Low mode averaging or A2A to collect statistics more efficiently