Infrared Fixed Point of SU(3) gauge theory with 12 flavor staggered fermions

Kenji Ogawa National Chiao-Tung University ⇒ Chung Yuan Christian University

lattice 2012, Cairns

In this talk, I show my trial to extract RG Beta function by simultaneous fitting w.r.t. bare coupling and lattice size. I show the application of this method to the data in arXiv: 0901.3766. (T.Appelquist et.al,) and arXiv: 1205.6076 (D.Lin et.al,)

Outline

Motivation

Details of Method

Application

Summary and Comments

Motivation

In search of BSM (Walking Technicolor) Step Scaling Function with fixed step size =>

- The result might depend on step size s
- Beta interpolation + continuum extrapolation makes interpretation of chi-square complicate

Extract beta function from simultaneous fit in a limited region

Use more Information from data (SSF with all available combination of step size) One chi-square

Review of Step Scaling Function

$$\begin{split} \sigma(u;s) &= g^2(sL)|_{g^2(L)=u} \\ \textbf{Relation between beta function} \\ &- \int_u^{\sigma(u;s)} \frac{1}{\beta(u)} \, du' = \log s \\ \textbf{Continuum SSF satisfies} \\ \sigma(u;s_1s_2) &= \sigma\left(\sigma(u;s_1);s_2\right) \\ \textbf{Lattice SSF} \\ \Sigma(u;s,\hat{L}) &= g_{\text{lattice}}^2 \left(g_0^2,s\hat{L}\right) \Big|_{g_{\text{lattice}}^2(g_0^2,\hat{L})=u} \\ &= \sigma(u;s) + f(u;s,\hat{L}) \\ &= \sigma(u;s) + f^{(1)}(u;s)\frac{1}{\hat{L}} + f(u;s)^{(2)}\frac{1}{\hat{L}^2} + \cdots \\ \textbf{which satisfies} \\ \Sigma\left(u;s_1s_2,\hat{L}\right) &= \Sigma\left(\Sigma(u;s_1,\hat{L});s_2,\underline{s_1\hat{L}}\right) \end{split}$$

Extracting Beta function by Simultaneous Fitting

I. Parametrize beta function and derive the relation between lattice SSF $\boldsymbol{\Sigma}$

II. Fix the parameters by simultaneous fitting with,

 $g_{\text{lattice}}^2(g_0^2, \hat{L}) = \Sigma\left(g_{\text{lattice}}^2(g_0^2, \hat{L}_0); s = \hat{L}/\hat{L}_0, \hat{L}_0\right)$

 \hat{L}_0 : Base Lattice Size Can be any number between minimum and maximum lattice size in data.

One have to make up a fit function for $g_{\text{lattice}}^2(g_0^2, \hat{L}_0)$

e.g.
$$g_{\text{lattice}}^2(g_0^2, \hat{L}_0) = h_0 + h_1 g_0^2 + h_2 g_0^4$$

We do simultaneous fit, but don't do global fit

General Procedure to Constrain Lattice SSF Parametrize Beta Function $\beta(u) = \beta(u; \{c_i\})$ Get the expression of sigma by Integration $-\int_{\cdots}^{\sigma(u;s)} \frac{1}{\beta(u)} \, du' = \log s \quad \Longrightarrow \quad \sigma(u;s) = \sigma(u;s,\{c_i\})$ Lattice SSF is given as, I assume that f is $\Sigma(u; s, \hat{L}) = \sigma(u; s) + f(u; s, \hat{L})$ analytic function of u, s, L. Lattice SSF satisfy the relation,

$$\Sigma\left(u;s_1s_2,\hat{L}\right) = \Sigma\left(\Sigma(u;s_1,\hat{L});s_2,s_1\hat{L}\right)$$

The above relation constrains the lattice artifact $f(u; s, \hat{L})$

Simplest Case: Beta Function = Constant $-\int_{-\infty}^{\sigma(u,s)} \frac{1}{c} du' = \log s \quad rack \quad \sigma(u;s) = u - c \, \log s$ $\Sigma(u; s, \hat{L}) = \sigma(u; s) + f(u; s, \hat{L})$ When lattice artifact is $\mathcal{O}(a)$, $f(u; s, \hat{L}) = f(u; s) \frac{1}{\hat{r}}$ Condition for Lattice SSF $\Sigma\left(u;s_1s_2,\hat{L}\right) = \Sigma\left(\Sigma(u;s_1,\hat{L});s_2,s_1\hat{L}\right)$ $= f(s_1s_2) = f(s_1) + f(s_2)\frac{1}{s_1} \qquad \text{u dependence}$ are omitted This is satisfied with $f(s) = k\left(\frac{1}{s} - 1\right)$ $\Sigma(u; s, \hat{L}) = u + c \log s + \frac{k}{\hat{r}} \left(\frac{1}{s} - 1\right)$

$$\beta(u) = -c_0^2 + c_1^2 (u - c_2)^2$$

$$(-)$$

$$\sigma(u) = c_2 + \frac{c_0}{c_1} \tanh\left(c_0 c_1 \log s - \arctan\left(c_1 \frac{c_2 - u}{c_0}\right)\right)$$

$$(\operatorname{arctan}) \left(\operatorname{carctan}\right) \left(\operatorname{carctan}\right)$$

Application I arXiv: 0901.3766. (T.Appelquist et.al,) Schrodinger Functional

Our Fit

Linear Beta Function + O(a) lattice artifact I5 data points are used in each region after sorting

Beta Function by simultaneous fitting

Application II

arXiv: 1205.6076 (D.Lin et.al,)

Polyakov Loop Scheme step size s = 2

L/a	β	\bar{g}_{latt}^2	# of traj.
16	5.30	3.065 (71)	321200
16	5.36	3.06 (11)	187232
16	5.50	2.950 (67)	256050
16	5.53	2.953 (83)	191286
16	5.70	2.851 (63)	235080
16	5.81	2.728 (70)	186009
16	6.12	2.490 (65)	183776
16	6.47	2.387 (44)	273140
16	6.50	2.259 (57)	286230
16	6.76	2.165 (66)	136446
16	7.11	1.997 (40)	244791
16	7.82	1.697 (47)	136365
16	8.00	1.725 (50)	141570
16	8.45	1.520 (24)	368201
16	9.00	1.379 (41)	114100
16	9.42	1.229 (28)	147603
16	11.15	0.964 (26)	72562
16	12.00	0.836 (17)	118000
16	13.85	0.700 (19)	70801
16	15.23	0.566 (13)	80752
16	16.00	0.5431 (89)	116000
16	17.55	0.4785 (100)	83657
16	18.00	0.469 (13)	40000
16	20.00	0.3902 (86)	44700
16	20.13	0.4135 (77)	79816
16	50.00	0.1327 (16)	60900
16	99.00	0.06326 (68)	28050

TABLE IV: Raw data for the renormalised coupling in the TPL scheme.

Fit assuming beta function is linear in a limited region, with Lattice artifact $1/\hat{L}^2$ 20 data points are used in each region after sorting Small Size lattice L=6,8 data excluded

Beta Function by simultaneous fitting

Summary and Comments

 $\begin{aligned} & \mathsf{Key-equations} \\ & -\int_{u}^{\sigma(u;s)} \frac{1}{\beta(u)} \, du' = \log s \\ & \Sigma(u;s,\hat{L}) = \sigma(u;s) + f(u;s,\hat{L}) \\ & \Sigma\left(u;s_1s_2,\hat{L}\right) = \Sigma\left(\Sigma(u;s_1,\hat{L});s_2,s_1\hat{L}\right) \quad g_{\text{lattice}}^2(g_0^2,s\hat{L}) = \Sigma\left(g_{\text{lattice}}^2(g_0^2,\hat{L});s,\hat{L}\right) \end{aligned}$

Lattice SSF is written with a simple function when beta function is considered to be linear and dependence of lattice artifact on u are omitted

Preferable if there are a lot of data points in a small region

Similar Result with SSF with fixed s

We treated a system in which running is slow

To be improved