Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks

Kei-ichi Nagai^a,

Yasumuchi Aoki^a, Tatsumi Aoyama^a, Masafumi Kurachi^a, Toshihide Maskawa^a, Hiroshi Ohki^a, Akihiro Shibata^b, Koichi Yamawaki^a and Takeshi Yamazaki^a. (LatKMI Collaboration)

> ^aKobayashi-Maskawa Institute (KMI), Nagoya University, ^bKEK, Computing Research Center, Tsukuba,

26 June, 2012

<ロト <四ト <注入 <注下 <注下 <

Contents:

- 2 Simulation details
- 3 $N_f = 4$ case (Preliminary)
- 4 $N_f = 8$ case (Preliminary)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

To Understand,

EW symmetry breaking by composite particles

 \rightarrow Technicolor model

quark mass term; $\frac{1}{\Lambda_{ETC}^2} \langle \bar{Q}Q \rangle \bar{q}q$

 $\langle \bar{Q}Q \rangle \neq 0 \rightarrow$ The quark mass is generated.

To explain the fact of FCNC ightarrow Walking behavior with $\gamma_m \simeq 1$

Thus,

Strong dynamics \rightarrow nonperturbative \Rightarrow lattice gauge theories

- \implies Application of lattice QCD technique
 - Running coupling constant (lattice β -function)
 - Spectroscopy (ChPT, Hyperscaling, ...)

A lot of lattice studies !

Why $N_f = 8$? (Walking/Conformal)

Walking Technicolor (K.Yamawaki *et.al.* ('86)) \rightarrow large anomalous mass dimension ($\gamma_m \simeq 1$) and $\langle \bar{\psi}\psi \rangle \neq 0$

Phenomenologically; $N_f = 8$ is a natural setup in SM. Farhi-Susskind model (one-family model): 3×2 in quark sector + 2 in lepton = 8 flavors.

Our purpose is to find gauge theories for constructing the model of the walking technicolor.

Our project

♦ We want to know the phase structure of many flavor gauge theories for the EW sym. breaking by the composite particle. ♦ Exploration of the walking behavior \leftarrow flavor dependence. ♦ We (LatKMI) investigate the spectrum for $N_f = (0)$, 4, 8, 12, 16 systematically.

 $N_f = 12$ and 16 \rightarrow H. Ohki's talk on Monday

A SD-eq. analysis with the finite-size and the mass correction \rightarrow M. Kurachi's talk on Thursday

Then,

♦ In this talk, we investigate $N_f = 4$ as the typical χ SB and $N_f = 8$ as the candidate for the walking technicolor model.

(日) (日) (日) (日) (日) (日) (日)

Lattice actions and the outline of simulations

• $S = S_G + \sum_{f=1}^{N_f} S_f^f$. • S_G ; Tree level Symanzik gauge action: $\beta = \frac{6}{g^2}$. • $S_f = S_{HISQ}$; HISQ action for the fermion sector : HISQ = Highly Improved Staggered Quarks • First application of HISQ action to many flavor system.

- Scheme KMI computer system, " φ ".
- We use the code based on MILC code version-7.
- Simulation \rightarrow standard HMC for $N_f = 4n$.
- Solution Observables: $M_{\pi}, M_{\rho}, f_{\pi}, \langle \bar{\psi}\psi \rangle$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Search parameters

N_f = 4;
β = 3.5, 3.6, 3.7, 3.8 on various lattice at various fermion masses. *N_f* = 8;
β = 3.6, 3.7, 3.8, 3.9 and 4.0 on 12³ × 32, 18³ × 24, 24³ × 32 and 30³ × 40 at various fermion masses.

(and on $36^3 \times 48$ at $m_f = 0.015$ for $\beta = 3.8$)

ChPT-like behavior

- In χ SB phase; \Leftrightarrow ChPT analysis
 - $M_{\pi}^2 = c_1 m_f + c_2 m_f^2$?
 - In the limit of $m_f \rightarrow 0, f_\pi \neq 0$?
 - In the limit of $m_f
 ightarrow 0, M_
 ho
 eq 0$?
 - In the limit of $m_f
 ightarrow 0$, $\langle \bar{\psi} \psi
 angle
 eq 0$?

In ChPT, the expansion parameter is $\chi = N_f \left(\frac{M_{\pi}(m_f)}{4\pi F_{\pi}(m_f=0)}\right)^2$. $\chi \lesssim 1$?

・ロト・西ト・西ト・西ト・日・ つんぐ

Finite-size Hyperscaling analysis for the conformal

The mass deformed hyperscaling in the conformal behavior;

$$M_H \propto m_f^{1 \over 1 + \gamma}$$
 (1)

Finite-size Hyperscaling analysis;

$$M_H = \frac{1}{L} \mathcal{F}(X)$$
 where $X = L m_f^{\frac{1}{1+\gamma}}$. (2)

on $L^3 \times T$ at a fixed ratio, $\frac{L}{T}$. Eq. (2) in the infinite volume limit \longrightarrow Eq. (1)

$$\mathcal{F}(X) = C_0 + C_1 L m_f^{\frac{1}{1+\gamma}} \,. \tag{3}$$

Thus, the finite-size hyperscaling

 $LM_H = C_0 + C_1 X$, where $X = Lm_f^{\frac{1}{1+\gamma}}$. (4)

 $N_f = 8$ case (Preliminary

ChPT analysis in $N_f = 4$

 $M_{\pi}^2 \propto m_f, f_{\pi} \neq 0$ and $\langle \bar{\psi}\psi \rangle \neq 0$ at $m_f = 0$ (as $m_f \to 0$) in the quadratic fit. $\implies N_f = 4$ is in χ SB phase.

Hyperscaling test in $N_f = 4$ case, f_{π}

the finite-size hyperscaling: $LM_H = \mathcal{F}(X)$ where $X = Lm_f^{\frac{1}{1+\gamma}}$;

No alignment in the range of $0 < \gamma < 2 \Rightarrow$ No hyperscaling! (The example to know what happens in the explicit χ SB phase)

Spectroscopy in $N_f = 8$. (M_{π}^2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

χ SB test in $N_f = 8$

$\Rightarrow \chi$ SB behavior; polynomial fit

•
$$M_{\pi}^2 = c_1 m_f + c_2 m_f^2$$
 ?

- In the limit of $m_f \rightarrow 0, f_\pi \neq 0$?
- In the limit of $m_f \rightarrow 0, M_
 ho \neq 0$?
- In the limit of $m_f \rightarrow 0$, $\langle \bar{\psi}\psi \rangle \neq 0$?

conformal behavior; power fit

• In the limit of $m_f
ightarrow 0, M_\pi^2, f_\pi, M_
ho, \langle \bar\psi\psi
angle
ightarrow 0$?

fit result of M_{π}^2 in $N_f = 8$ at $\beta = 3.8$

f_{π} and $M_{ ho}$ in $N_{f} = 8$ at $\beta = 3.8$

Power fit: $\chi^2(f_\pi)/\text{dof} = 14.7$, $\chi^2(M_\rho)/\text{dof} = 6.5$ Polynomial fit: $\chi^2(f_\pi)/\text{dof} = 6.1$, $\chi^2(M_\rho)/\text{dof} = 1.3 \rightarrow \text{better}$ and

 $f_{\pi}=0.0295(3)$ and $M_{
ho}=0.191(8)$ in the limit $m_f
ightarrow 0.$

χ SB test in $N_f = 8$

In χ^2/dof monitoring, the polynomial fit is better than the power fit. $\rightarrow \chi$ SB phase However, M_{π}^2 in $N_f = 8$ seems to be different from that in $N_f = 4$. (The quadratic term is visible.)

In this analysis (in this talk);

- The infinite volume limit is not taken into account.
- In ChPT, $F = F_{\pi}(m_f = 0) \simeq 0.03 \sim 0.04$.

At $M_{\pi} = 0.2$, $\chi = N_f (\frac{M_{\pi}^2}{4\pi F})^2 \simeq 1.22 \sim 2.25$

To obtain the definite conclusion \Longrightarrow future work

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Condensate: PBP=Tr[S(x, x)] and GMOR relation; $\Sigma = \frac{f_{\pi}^2 m_{\pi}^2}{m}$

Left: *PBP* ~ m_f , in contrast to $N_f = 4$ case. Right: Solid line \leftarrow quadratic fit of each M_{π}^2 and f_{π}

 m_{f}

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Condensate: PBP=Tr[S(x, x)] and GMOR relation; $\Sigma = \frac{f_{\pi}^2 m_{\pi}^2}{m}$

In the limit $m_f \rightarrow 0$, Left: $PBP \simeq 0.001$ Right: GMOR \simeq 0.002. If in χ SB phase $\Rightarrow \langle \bar{Q}Q \rangle$ is very small.

Remnant of the conformal behavior $? \rightarrow$ Hyperscaling test

$N_f = 8, \ \beta = 3.8$: $LM_{\pi} = C_0 + C_1 Lm_f^{1+\pi}$

$N_f = 8, \ \beta = 3.8$: $LM_{\pi} = C_0 + C_1 Lm_f^{1+\pi}$

$N_f = 8, \ \beta = 3.8: LM_{\pi} = C_0 + C_1 Lm_f^{\frac{1}{1+\gamma}}$

$N_f = 8, \ \beta = 3.8$: $LM_{\pi} = C_0 + C_1 Lm_f^{1+\pi}$

$N_f = 8, \ \beta = 3.8$: $LM_{\pi} = C_0 + C_1 Lm_f^{1+\pi}$

Finite-size hyperscaling test in $N_f = 8, \beta = 3.8$

- ≣ ▶ = • • • • • • •

The value of γ in the finite-size hyperscaling test

	$\beta = 3.6$	$\beta = 3.7$	$\beta = 3.8$	$\beta = 3.9$	$\beta = 4.0$
γ in M_{π}	0.64(1)	0.63(1)	0.61(1)	0.56(1)	0.56(1)
$\gamma \inf f_{\pi}$	0.98(2)	0.99(1)	0.95(1)	0.92(1)	0.91(1)
γ in $M_{ ho}$	1.02(2)	0.91(4)	0.84(3)	0.79(4)	0.77(6)

Table: the statistical error only

For $N_f = 8$, $\gamma(M_\pi) \neq \gamma(f_\pi)$

 \rightarrow not conformal

 \rightarrow the remnant of the conformal property

- \rightarrow finite-mass and -size correction? \Rightarrow M. Kurachi's talk However, $0.5 < \gamma(f_{\pi}) \lesssim 1.0$.
- \rightarrow What's the meaning? Walking?
- \rightarrow Phenomenologically interesting (one-family model)

♠ In LatKMI collaboration, the investigation of the many flavor QCD ($N_f = 0, 4, 8, 12$ and 16) on KMI computer system " φ ", for IRFP search and the exploration of the walking behavior. ♠ Tree level Symanzik gauge action + HISQ staggered fermion for many flavor system.

♦ $N_f = 4$ case shows the property of χ SB. ♦ $N_f = 12$ is in good agreement with the hyperscaling. ⇒ consistent with the conformal (H. Ohki's talk)

♦ $N_f = 8$ is consistent with χ SB. (but, a little diff. from $N_f = 4$) + the remnant of the conformal property.

 \implies Walking?

Summary

♣ Flavor dependence of γ , (roughly,) in the hyperscaling test: $LM = \mathcal{F}(Lm_f^{1/(1+\gamma)})$,

N_f	4	8	12
$\gamma(M_{\pi})$	= 1.0	~ 0.6	~ 0.45
$\gamma(f_{\pi})$	> 2.0	~ 1.0	~ 0.5

 \blacklozenge To obtain the definite conclusion \Rightarrow on larger lattices at lighter fermion masses. (In progress)

♠ $N_f = 8 SU(3)$ gauge theory is phenomenologically interesting and important. → Walking technicolor model with $\gamma_m \simeq 1$.

 To make "the particle data booklet" = Techni-Spectroscopy (singlet-scalar, glueball, condensate, string tension, S-parameter, *etc.*) in LHC era.

Introduction	Simulation details	$N_f = 4$ case (Preliminary)	$N_f = 8$ case (Preliminary)	Summary
--------------	--------------------	------------------------------	------------------------------	---------

BACK UP

Spectroscopy in $N_f = 8$ at $\beta = 3.8$

Hyperscaling test in $N_f = 8$ at $\beta = 3.8$ with on $12^3 \times 32$;

う P の 4 の