Calculating the two-pion decay and mixing of neutral *K* mesons

> Lattice 2012 June 26, 2012

Norman H. Christ

RBC and **UKQCD** Collaboration

Outline

- Weak interactions on the lattice
- $K \rightarrow \pi \pi$
 - Lattice aspects
 - Results ($\Delta I = 3/2$ and 1/2)
- Second order weak processes
 - Focus on $m_{KL} m_{KS}$
 - Indirect CP violation: ε_K
 - Rare *K* decays

Overview

- m_{π} =135 MeV and L = 4 6 fm are now possible, even with domain wall fermions.
- Increase accuracy on standard quantities:

 $f_{\pi}, f_{K}, m_{ud}, m_{s}, B_{K}, \dots$

- Compute new quantities
 - Better computers + algorithms
 - Avoid mass extrapolations and ChPT

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian $\mathcal{H}^{(\Delta S=1)} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) - \frac{V_{td} V_{is}^*}{V_{ud} V_{us}^*} y_i(\mu) \right] Q_i \right\}$ • $V_{qq'}$ - CKM matrix elements • z_i and y_i - Wilson Coefficients 2 GeV
 - Q_i four-quark operators

 $< \overline{K}^0 | H_w | \pi \pi >$

300 MeV

Four quark operators

- Current-current operators
 - $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$
 - QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$

$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$

$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

• Electro-Weak Penguins

$$Q_{7} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V+A}$$

$$Q_{8} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V+A}$$

$$Q_{9} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V-A}$$

$$Q_{10} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V-A}$$

Cairns June 26, 2012 (5)

Second order weak processes

Cairns June 26, 2012 (6)

RBC Collaboration

- BNL
 - Alexei Bazavov
 - Prasad Hegde
 - Chulwoo Jung
 - Frithjof Karsch
 - Swagato Mukherjee
 - Peter Petreczky
 - Amarjit Soni
 - Christian Sturm (Munich)
 - Ruth Van de Water
 - Oliver Witzel (BU)
- RBRC
 - Yasumichi Aoki (Nagoya)
 - Tom Blum (Connecticut)
 - Tomomi Ishikawa
 - Taku Izubuchi (BNL)
 - Christoph Lehner
 - Yu Maezawa
 - Shigemi Ohta (KEK)
 - Eigo Shintani

- Columbia
 - Norman Christ
 - Xiao-Yong Jin
 - Chris Kelly
 - Matthew Lightman (St. Louis)
 - Jasper Lin
 - Qi Liu
 - Robert Mawhinney
 - Hao Peng
 - Hantao Yin
 - Jianglei Yu
 - Daiqian Zhang

UKQCD Collaboration

• Edinburgh

- Rudy Arthur
- Peter Boyle
- Nicolas Garron
- Jamie Hudspith
- Karthee Sivalingam

- Southampton
 - Dirk Brommel
 - Jonathan Flynn
 - Elaine Goode
 - Andreas Juttner
 - Andrew Lytle
 - Chris Sachrajda

$K \rightarrow \pi \pi$ decay

Cairns June 26, 2012 (9)

Lattice Aspects

Cairns June 26, 2012 (10)

Evaluate $\langle K|H_W|\pi\pi$ >

- Use SU(3) ChPT: $\langle K|H_W|\pi \rangle \& \langle K|H_W|0\rangle \rightarrow \langle K|H_W|\pi\pi\rangle$?
 - $-m_K$ too large
 - ~70% errors
- Maiani-Testa no-go theorem (1990):
 - Euclidean space: e^{-Ht} projects onto lowest energy state
 - Gives π π state with zero relative momentum
 - Watson theorem: outgoing $\pi \pi$ scattering phase requires Minkowski space?

Resolved by Lellouch-Luscher

- Use finite-volume quantization.
- Adjust volume so 1st or 2nd excited state has correct *p*.
- Requires extracting signal from non-leading large *t* behavior:

$$p = 2\pi/L$$

$$G(t) \sim c_0 e^{-E_0 t} + c_1 e^{-E_1 t}$$

- Finite volume states correctly include π π interactions.
- Lellouch-Luscher correction factor compensates for finite volume, \vec{J} non-conservation.

Lattice operators

- Use chiral fermions (DWF): good short-distance chiral symmetry controls operator mixing (L_s =16 and 32)
- Use non-perturbative methods to convert lattice operators to regularization invariant (RI) scheme at a scale μ .
- Use a series of finer lattice ensembles to nonperturbatively run μ up to 3 GeV.
- Use continuum perturbation theory to convert RI to MS

$\Delta I = 3/2$

Cairns June 26, 2012 (14)

$\Delta \mathbf{I} = 3/2 \ K \rightarrow \pi \, \pi$

- Three operators contribute $O^{(27,1)}$, $O^{(8,8)}$ and $O^{(8,8)m}$.
- Use isospin to relate to $K^+ \rightarrow \pi^+ \pi^+$.
- Use anti-periodic boundary conditions for *d* quark. (Changhoan Kim, hep-lat/0210003).
- Achieve essentially physical kinematics!
 - (63 \rightarrow 147 configurations)
 - $m_{\pi} = 142.9(1.1) \text{ MeV}$
 - $m_K = 511.3(3.9) \text{ MeV}$
 - $E_{\pi\pi} = 492(5.5) \text{ MeV}$

Cairns June 26, 2012 (15)

Computational Set-up (Lightman and Goode)

- Use anti-periodic boundary conditions for d quark in two directions (average over three choices).
- Fix $\pi \pi$ source at t = 0, vary location of O_W and kaon source.

$< \pi \pi | O | K >$ from 63 configurations

Cairns June 26, 2012 (17)

Relate lattice and continuum operators

- Calculation is performed on 1/a=1.37 GeV lattice.
- Matching to perturbative $\overline{\text{MS}}$ scheme is unreliable at scale $\mu \sim 1/a$!
- Carry out sequence of NP RI matching steps:

$$Z_{(\underline{a},\underline{a})}^{\overline{\mathrm{MS}},(\mathrm{latt})}(\mu) = \begin{pmatrix} 0.424(4)(4) & 0 & 0 \\ 0 & 0.472(6)(8) & -0.020(5)(21) \\ 0 & -0.067(23)(30) & 0.572(28)(20) \end{pmatrix}$$

$$1.136 \text{ GeV} < \mu < 3.0 \text{ GeV}$$

$$1/a=1.37 \text{ GeV}$$

$$\mu = 1.136 \text{ GeV}$$

$$1/a=1.73 \text{ GeV}$$

$$1/a=2.28 \text{ GeV}$$

$$1/a=2.28 \text{ GeV}$$

$$1/a=\infty$$

$$1/a=\infty$$

$$\mu = 3.0 \text{ GeV}$$

$$MS$$

Determine physical A_2

• Recall $\langle \pi \pi (I=2) | \mathcal{L}_W(0) | K \rangle = A_2 e^{i\delta_2}$

$$A_{2} = \frac{\sqrt{3}}{2\sqrt{2}} \frac{1}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}} + \frac{\partial \delta}{\partial q_{\pi}}} L^{3/2} a^{-3} G_{F} V_{ud} V_{us} \sqrt{m_{K}} E_{\pi\pi}$$
$$\times \sum_{i,j} C_{i}(\mu) Z_{ij}(\mu) \langle \pi \pi | Q_{j} | K \rangle$$

- $\operatorname{Re}(A_2)$ dominated by single operator $O^{(27,1)}$.
- Im(A_2) dominated by the operators O^(8,8) and O^{(8,8)m}
- Determine Lellouch-Luscher factor.

$$\frac{\partial \phi}{\partial q_{\pi}} = 5.038(34) \quad \frac{\partial \delta}{\partial q_{\pi}} = -0.2954(20)$$

Cairns June 26, 2012 (19)

Cairns June 26, 2012 (20)

Determine physical A_2

• Error estimates:

	ReA ₂	ImA_2
lattice artefacts	15%	15%
finite-volume corrections	6.2%	6.8%
partial quenching	3.5%	1.7%
renormalization	1.8%	5.6%
unphysical kinematics	0.4%	0.8%
derivative of the phase shift	0.97%	0.97%
Wilson coefficients	6.6%	6.6%
Total	18%	19%

- $\operatorname{Re}(A_2) = (1.436 \pm 0.063_{stat} \pm 0.258_{sys}) \ 10^{-8} \text{ GeV}$ Experiment: 1.479(4) 10^{-8} GeV
- $\operatorname{Im}(A_2) = -(6.29 \pm 0.46_{\text{stat}} \pm 1.20_{\text{sys}}) \ 10^{-13} \text{ GeV}$

$\Delta I = 1/2$

Cairns June 26, 2012 (22)

$\Delta I = 1/2 \quad K \to \pi \pi$ (Qi Liu)

• Made much more difficult by disconnected diagrams:

• <u>16³ x 32 ensemble</u> (arXiv:1106.2714 [hep-lat])

 $- 1/a = 1.73 \text{ GeV}, m_{\pi} = 420 \text{ MeV}, L = 1.8 \text{ fm}$

- Use 8000 time units, measure every 10 (800 configs.)
- <u>24³ x 64 ensemble</u> (22 x harder)
 - $1/a = 1.73 \text{ GeV}, m_{\pi} = 329 \text{ MeV}, L = 2.8 \text{ fm}$
 - Use 5520 time units, measure every 40 (138 configs.)
- Adjust valence strange mass for on-shell, threshold kinematics ($\pi \pi$ state is unitary)

$\Delta I = 1/2 \ K \rightarrow \pi \pi$

• Code 50 different contractions of four types:

Substantially improved methods

- Improve statistics using sources at each of 32 or 64 times
- Accelerate inversions with low-mode deflation or EigCG
- Reduce vacuum coupling by separating pion sources
- Subtract divergent $\overline{s}d$ and $\overline{s} \gamma^5 d$ terms
 - Does not affect on-shell amplitudes
 - Suppress $1/a^2$ -enhanced excited state contributions.

 $\Delta I = 1/2 \quad K \rightarrow \pi \pi \quad 24^3 \times 64$

Cairns June 26, 2012 (26)

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$: Future

- Goal is a 20% calculation of ε'/ε with all errors controlled
- Repeat $\Delta I = 3/2$ kinematics
 - Use $32^3 \times 64$ volume with 1/a = 1.37 GeV
 - Achieve p = 205 MeV from G-parity in 2 directions (Chris Kelly – Friday)
- Exploring "all-2-all" propagators (KEK/Trinity)
 - Provide deflation
 - Extract many measurements from one configuration
 - Sum over localized sources highly suppress vacuum coupling
- BG/Q gives 20 x speedup (Peter Boyle Friday)
- Result hoped for in 2 years

K_L – *K_S* mass difference

Cairns June 26, 2012 (28)

$K^0 - \overline{K^0}$ Mixing

• Time evolution of $K^0 - \overline{K}{}^0$ system given by familiar Wigner-Weisskopf formula:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

where:

$$\Gamma_{ij} = 2\pi \sum_{\alpha} \int_{2m_{\pi}}^{\infty} dE \langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle \delta(E - m_K)$$

$$M_{ij} = \sum_{\alpha} \mathcal{P} \int_{m_{\pi}}^{\infty} dE \frac{\langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle}{m_K - E}$$

Cairns June 26, 2012 (29)

$K^0 - \overline{K^0}$ Mixing

• $m_{KL} - m_{KS}$ dominated by $p \le m_c$

Lattice Version (Jianglei Yu – Friday talk)

• Evaluate standard, Euclidean, 2^{nd} order $K^0 - \overline{K^0}$ amplitude:

$$\mathcal{A} = \langle 0 | T \left(K^0(t_f) \frac{1}{2} \int_{t_a}^{t_b} dt_2 \int_{t_a}^{t_b} dt_1 H_W(t_2) H_W(t_1) K^{0^{\dagger}}(t_i) \right) | 0 \rangle$$

Cairns June 26, 2012 (31)

Interpret Lattice Result

$$\mathcal{A} = N_{K}^{2} e^{-M_{K}(t_{f}-t_{i})} \left\{ \sum_{n \neq n_{0}} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{M_{K} - E_{n}} \left(-(t_{b} - t_{a}) - \frac{1}{M_{K} - E_{n}} + \frac{e^{(M_{K} - E_{n})(t_{b} - t_{a})}}{M_{K} - E_{n}} \right) + \frac{1}{2} \langle \overline{K}^{0} | H_{W} | n_{0} \rangle \langle n_{0} | H_{W} | K^{0} \rangle (t_{b} - t_{a})^{2} \right\}$$

$$(3.)$$

- 1. $\Delta m_K^{\rm FV}$
- 2. Uninteresting constant
- 3. Growing or decreasing exponential: $E_n > m_K$ must be removed!
- 4. Degenerate $E_{\pi\pi} = m_K$ state

Remove finite volume effects

• Use Luscher condition to relate finite and infinite volume energies to 2^{nd} order in H_W :

Evaluate at $E_{\pi\pi} = m_K + E^{(1)} + E^{(2)}$

Cairns June 26, 2012 (33)

Infinite-finite volume relations

• Expand Luscher condition to 1^{st} order in H_W :

$$\Gamma = 2 \frac{\partial}{\partial E} \left(\phi + \delta_0 \right) \left| \left\langle \pi \pi(E) | H_W | K_S \right\rangle \right|^2$$

• Expand to 2^{nd} order in H_W :

$$\Delta m_{K} = \Delta m_{K}^{\text{FV}} + \frac{1}{\frac{\partial(\phi+\delta_{0})}{\partial E}} \left[\frac{1}{2} \frac{\partial^{2}(\phi+\delta_{0})}{\partial E^{2}} |\langle n_{0}|H_{W}|K_{S}\rangle|^{2} - \frac{\partial}{\partial E} \frac{\partial}{\partial E} \langle \frac{\partial(\phi+\delta_{0})}{\partial E} |\langle K_{S}|H_{W}|n_{0}\rangle|^{2} \right]_{E=m_{K}}$$

- Applies to long-distance parts of both
 - $\operatorname{Re}(M_{0\overline{0}}): m_{KL} m_{KS}$
 - $\operatorname{Im}(M_{0\overline{0}})$: ε_K

Lattice setup (Jianglei Yu)

- $N_f = 2+1$ and 2+1+1, $16^3 \times 32$, $m_{\pi} = 420$ MeV
- Include type 1 and type 2 graphs:

Cairns June 26, 2012 (35)

First results (Jianglei Yu)

- $N_f = 2+1, 16^3 \ge 32, m_{\pi} = 420 \text{ MeV}$
- Introduce GIM cancellation

- Accurate m_c^2 behavior $\rightarrow m_c \sim 1$ GeV *OK* for 1/a=1.73?
- Note $p \le m_c$

Cairns June 26, 2012 (36)

Results

M_K	ΔM_K^{11}	ΔM_K^{12}	ΔM_K^{22}	$\Delta M_K~(imes 10^{-12}~{ m MeV})$
0.3252(7)	6.38(14)	-2.64(14)	1.47(8)	5.52(24)
0.4087(7)	8.90(21)	-2.96(23)	2.10(12)	7.38(37)
0.4480(7)	10.63(27)	-3.18(30)	2.48(15)	8.61(49)
0.4848(8)	12.56(34)	-3.62(40)	2.89(20)	9.93(65)

- $\Delta m_K^{\text{expt}} = 3.483(6) \ 10^{-12} \text{ MeV}$
- Unphysical kinematics, $m_{\pi} = 421 \text{ MeV}$
- Disconnected diagrams dropped
- Identify $\pi \pi$ contribution? (Jianglei's talk)
- Active charm but $m_c a = 0.7$
- Improvements underway!

Kaon physics on the lattice Outlook

- Work at physical quark masses.
- DW fermions and NPR give continuum-like control of operator normalization and mixing.
- Theoretical advances allow rescattering effects to be correctly computed in Euclidean space.
- Many critical quantities can now be computed:

– $K \rightarrow \pi \pi$, $\Delta I=3/2$ and 1/2, ε'/ε

- $-m_{KL}-m_{KS}$
- $K \rightarrow \pi l \, \overline{l}$