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Introductory reviews on large-N QCD:

• E. Brézin and S. R. Wadia, The Large N Expansion in Quantum Field Theory and
Statistical Physics: From Spin Systems to 2-Dimensional Gravity, World
Scientific, Singapore, 1993

• Y. Makeenko, hep-th/0001047

• M. Teper, 0912.3339

• B. Lucini and M. P., in preparation

At this conference, parallel talks relevant for this topic are presented by
M. Garćıa Pérez, A. González-Arroyo, M. Hanada, M. Honda, D. Kadoh, L. Keegan,
M. Koreń, J.-W. Lee, R. Lohmayer, F. Negro, M. Okawa and P. Orland.
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Introduction Recent results Concluding remarks

QCD in the ’t Hooft limit

Consider a generalization of QCD with SU(N → ∞) gauge group

• Take g → 0, with λ = g2N fixed, to have a perturbatively smooth limit

• Keep track of the number of independent color indices in Feynman diagrams
through double-line notation for propagators

• Dominance of planar diagrams without dynamical quark loops

• Terms proportional to different powers of 1/N can be arranged in a topological
series

A =
∞∑

h,b=0

N2−2h−b
∞∑
n=0

c(h,b),nλ
n

Analogous to a loop expansion in Riemann surfaces for string theory, upon
replacing 1/N → gs

• This also holds according to the conjectured holographic correspondence: In the
large-N limit, loop effects on the string side become negligible (see also plenary
talk by Hanada)
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A wealth of phenomenological implications from large-N counting rules

Assuming that the large-N limit of QCD is confining:

• The spectrum consists of infinitely many stable glueballs and mesons, with
masses O(1) and interactions suppressed by powers of 1/

√
N: large-N QCD is a

theory of weakly coupled hadrons

• Exotica (e.g. tetraquarks, molecules, et c.) are absent

• The OZI rule is exact

• Loop effects in the chiral Lagrangian are suppressed by 1/N

• The axial anomaly is suppressed by 1/N, and the square of the η′ mass is O(1/N)

• Baryons can be interpreted as solitons of the theory, with masses O(N)

• Quantitative predictions for baryon-meson couplings, baryon masses, magnetic
moments, et c. from consistency conditions based on unitarity

• Implications for the QCD phase diagram—quarkyonic matter (McLerran and
Pisarski, 2007)?

• Further implications for high-energy QCD (evolution equations, hadronic
cross-sections, parton distributions and structure functions, large-N Standard
Model, . . . )
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Factorization, volume reduction and large-N equivalences

“You can hide a lot in a large-N matrix”
—Stephen Shenker

• Large-N counting rules imply that vev’s of products of gauge-invariant operators
are dominated by disconnected contributions ⇒ Factorization of vev’s of physical
operators

〈O1O2〉 = 〈O1〉〈O2〉 + O(1/N)

The analogy with a classical limit can be made explicit by constructing
appropriate coherent states (Yaffe, 1982)

• Factorization leads to volume independence
• Volume reduction can be interpreted as a large-N “orbifold” equivalence:

Projection using a discrete subgroup of the global symmetries of the theory
(Kovtun, Ünsal and Yaffe)

• Orbifold equivalences at large N also relate theories with different field
content—e.g., orientifold planar equivalence (Armoni, Shifman and
Veneziano—see also numerical studies by Lucini et al.)

• Finally, orbifold projections are also relevant for lattice supersymmetry (Catterall,
Kaplan and Ünsal; see also Tsuchiya et al., Nishimura et al.)
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• Factorization leads to EK volume independence if center symmetry is unbroken
• But center symmetry does get broken in a small volume in the continuum limit;

fixes:
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• Twisted EK (González-Arroyo and Okawa; Teper and Vairinhos, Azeyanagi et al.,

Bietenholz et al., Garćıa Pérez et al.)
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• Double-trace deformations (Ünsal and Yaffe; Ogilvie et al.; Vairinhos; Hanada et al.)

SYM −→ SYM +
1

N3
t

∑
~x

bN/2c∑
n=1

an|tr(Ln(~x))|2

• Partial reduction

• Volume reduction can be interpreted as a large-N “orbifold” equivalence:
Projection using a discrete subgroup of the global symmetries of the theory
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(Kovtun, Ünsal and Yaffe)

• Orbifold equivalences at large N also relate theories with different field
content—e.g., orientifold planar equivalence (Armoni, Shifman and
Veneziano—see also numerical studies by Lucini et al.)

• Finally, orbifold projections are also relevant for lattice supersymmetry (Catterall,
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Results in 4D

• SU(N) is a confining theory in the large-N limit (see, e.g., Meyer and Teper
hep-lat/0411039)

• Confining flux tubes behave like Nambu-Goto strings
• Glueball masses have a smooth dependence on N
• Well-behaved scale-dependence of the coupling
• The deconfinement temperature has a smooth dependence on N
• The equation of state appears to have only a trivial dependence on N
• Topological susceptibility and θ-dependence
• Quenched mesonic spectrum
• Quenched baryonic spectrum
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Piemonte et al., in progress
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Results in 3D

Much like in 4D:

• SU(N) is a confining theory in the large-N limit (Teper, hep-lat/9804008)

• Confining flux tubes behave as Nambu-Goto strings (Athenodorou et al.,
1103.5854; Caselle et al., 1102.0723; Mykkänen, in progress)

• Glueball masses have a smooth dependence on N (Johnson and Teper,
hep-ph/0012287; Meyer, hep-lat/0508002)

• The equation of state depends only trivially on N (Caselle et al., 1105.0359 and
1111.0580)
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Results in 2D

Several exact results are known; in particular:

• The continuum spectrum of large-N QCD in 2D was computed by ’t Hooft in
1974

• In 1979, Gross and Witten found a third-order transition in the lattice theory

• The spectral density of Wilson loops was studied by Durhuus and Olesen in 1981

In general, a 2D world can be a useful laboratory for QCD toy models (see, e.g., works
by Narayanan, Neuberger and Vicari; Orland et al., . . . )

Recently, the eigenvalue density of Wilson loops in 2D has been studied by Lohmayer,
Neuberger and Wettig; similar studies have also been done in 4D (Lohmayer and
Neuberger)

Various groups (e.g. Bringoltz; Galvez, Hietanen and Narayanan, et c.) have
addressed the problem of 2D large-N theories at finite chemical potential
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Lattice studies of gauge theories in the large-N limit are theoretically very appealing,
numerically tractable, and interesting for a very broad community.

During the last fifteen years, numerical simulations in this field have given conclusive
answers to various long-standing questions. However, many other issues are still open,
and waiting for your involvement.

From my personal point of view, particularly promising research directions for further
numerical studies at large N include:

• Simulations with dynamical fermions, in various representations

• Finite temperature/finite density; comparisons with perturbative computations,
with holography, or with effective models

• Topological properties (see, e.g., Lucini et al., hep-lat/0401028, hep-lat/0502003;
Panagopoulos and Vicari, 0803.1593, 1109.6815; D’Elia and Negro, 1205.0238)

• Large-N equivalences and volume reduction
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