Lattice gauge theory and physics beyond the standard model

Joel Giedt Rensselaer Polytechnic Institute

Outline

- Dynamical electroweak symmetry breaking/Technicolor
 - Conformal/confining
 - Measurements
- Not included (w/ apologies):
 - Supersymmetry
 - Condensed matter
 - Matrix models
 - Quantum gravity
 - Extra dimensions
 - Weak interaction
 - Higgs physics
 - Standard model tests
 - Generic quantum field theory

Technicolor

- Standard model Higgs suffers from hierarchy problem and triviality problem
- Replace Higgs vev with condensate of new fermions under new color group (technicolor)
- To avoid FCNCs, need to push up scale associated with exchange particle (ETC) that generates four-fermion terms from which quark/lepton masses are derived.
- Need large condensate at ETC scale to get viable quark masses: walking with $\gamma=1$

$$\langle \bar{\psi}\psi \rangle_{ETC} = \langle \bar{\psi}\psi \rangle_{TC} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma}$$

- Much effort has gone into attempting to distinguish between the two pictures below.
- It's not easy given that on a single lattice we only see a small range of μ and it's necessary to keep bare g small to have small a.
- In addition, we often have a nonzero mass, which drives the theory away from the fixed point at long distances (RHS \rightarrow LHS).

12 flavors of fundamentals in SU(3)

• Of course you have the Appelquist, Fleming, Neil result...

 More recently, Deuzeman, Lombardo, Nunez da Silva & Pallante observe two transitions, one of which is clearly bulk and the other is argued to be bulk:

• Jin & Mawhinney observe a bulk transition with two different actions

• On the weak side they see behavior consistent (?) with $\chi {
m SB}$

• They also find a massless scalar at the end of the first order line and interpret it as a UVFP

The negative adjoint explorations

A. Hasenfratz

12 flavor results

MCRG (See talk Thurs. by Petropoulos)

Cheng, Hasenfratz & Schaich

• One thing that differs significantly between the two phases is the static potential...

• This is to be compared with the results of LHC (Fodor, Holland, Kuti, Nogradi & Schroeder 2010) :

See talk by Holland from Mon.

• LHC find a nonzero nucleon gap in the chiral limit:

• When they measure the string tension in these units, extrapolating to the chiral limit, they have a nonzero result:

This ought to address the issue that the massive theory is always confining at long enough distance scale.

• LHC has identified the two phase transitions relative to their principal simulation point:

• F extrapolates to a nonzero value, indicating spontaneous chiral symmetry breaking.

• The chiral condensate comes out nonzero

- Similar results are found for the nucleon, f_0 , rho and the a_1 .
- It looks like the 12-flavor theory has a hadronic scale given by Ma=0.1 for this lattice spacing.
- The existence of a dynamical scale is forbidden by the IRCFT hypothesis.

Conformal fits

• The Lattice 2011 proceedings generalizes the function and includes finite volume (FSS):

$$ML = f(x), \quad x = m^{1/y_m}L$$

$$f(x) = c_1 x + c_{\exp}(c_1 x)^{-1/2} \exp(-c_1 x), \quad x > x_{\text{cut}}$$

 $f(x) = c_0 + c_\alpha x^\alpha, \quad x < x_{\rm cut}$ with qualifications.

• See talk by Wong from Mon.

channel	γ	$\chi^2/{ m dof}$
pion	0.393(8)	2.83
F	0.214(16)	14.3
rho	0.300(17)	1.51
nucleon	0.288(27)	1.45

- The γ values don't agree within the errors derived from the fit.
- But how large is the systematic error associated with choice of fitting function?
- For example, could I bring the 0.39 value from the pion down to the 0.30 value from the rho by choosing a different function?

 DeGrand approached this problem by extracting *γ* from the FHKNS results using an approach that doesn't assume a specific form for the finite size scaling function f(x).

$$P(y_m) = \frac{1}{N_{over}} \sum_p \sum_{j \neq p} \sum_{i,over} \left(\frac{\xi_L(m_{i,j})}{L_j} - f_p(L_j^{y_m} m_{i,j}) \right)^2$$

TABLE I: Exponent y_m from various hadronic channels. Errors are from a single-elimination jackknife.

channel	y_m	
pseudoscalar	1.35(23)	
nucleon	1.43(26)	
f_{π}	1.23(31)	
vector	1.33(22)	
axial vector	1.32(12)	

• The LHC collaboration has responded with spline based general B-form fits

channel	γ	$\chi^2/{ m dof}$
pion	0.405(21)	1.47
rho	0.315(75)	1.02
F	0.23(2)	8.05

• Cheng, Hasenfratz and Schaich have been looking at the mode number of the Dirac operator (following A. Patella) to determine the anomalous mass dimension.

$$\nu(\lambda) - \nu(\lambda_0) = cV(\lambda^{4/y_m} - \lambda_0^{4/y_m})$$

- They have added many more eigenvalues (x10) and now perform fits on separate volumes (Talk: Hasenfratz, Tues. afternoon).
- They find that it is necessary to go to fairly large β (well past the bulk phase transition) to see y_m volume independence.

• The LatKMI collaboration (Aoki et al.) have studied spectra.

LHC Pions

- They also do a FSS fit with $f(x) = c_0 + c_1 x$
- The constant term is a guess.

$$\gamma = 0.44 \pm ?, \quad \chi^2/\text{dof} = 4$$

- All results "preliminary" (Lattice 2011 proc.)
- Follow-up work and further results were presented Mon. (Ohki)

- Appelquist, Fleming, Lin, Neil & Schaich [1106.2148] have considered mass corrected hyperscaling: $M_X = C_X m^{1/(1+\gamma)} + D_X m$
- It is sensible that corrections should be analytic in m.
- Similar eq. for F.
- Condensate: $\langle \bar{\psi}\psi \rangle = A_C m + B_C m^{(3-\gamma)/(1+\gamma)}$
- SD inspired generalization:

 $\langle \bar{\psi}\psi \rangle = A_C m + B_C m^{(3-\gamma)/(1+\gamma)} + C_C m^{3/(1+\gamma)} + D_C m^3$

• Without the D-terms,

$$\chi^2/{
m dof} = 133/53$$

• With the D-terms and finite volume corrections,

$$\chi^2/dof = 42/44$$

Sextet

- In the Lattice 2010 proceedings, LHC (FHKNS) report that a collective fit to the pion, F and the chiral condensate produces:
 - $\chi^2/dof = 1.24$ for χ SB

•
$$\chi^2 / dof = 6.96$$
 for IRCFT

• Lattice 2011 proc. LHC results for chiral fit:

channel	$\chi^2/{ m dof}$
pion	1.6
F	0.87
rho	0.56
f0 (connected)	0.48

• Lattice 2011 proc. LHC results for conformal fit

channel	γ	$\chi^2/{ m dof}$
pion	1.091(34)	2.0
F	2.13(18)	2.0

 $M, F \sim m^{1/(1+\gamma)}$

• And the chiral condensate:

For most recent results, see Kuti talk from Mon.

- DeGrand, Shamir and Svetitsky have added a fat link sextet repr. gauge action term which allows them to push into stronger coupling w/o hitting the bulk transition.
- They compute a discrete beta function from differences between two lattices.

- They also measure γ

• Similar results by same group for SU(4).

• Kogut and Sinclair have been studying the finite temperature transition in this theory.

- The scaling of the peak with mass is consistent with a second order finite temperature phase transition and inconsistent with a first order bulk transition.
- Results are too preliminary (smaller mass may be needed) for an accurate estimate of the peak location for N_t =12 (however, see Sinclair's talk from Mon).
- Ultimately N_t=18 will also be needed.

$SU(2) N_f = 2 Adjoint$

- DeGrand, Shamir, Svetitsky results for beta function and γ

- JG & Weinberg estimate from FSS
- Using approach advocated by DeGrand

Channels and fits

Observable	Quadratic	Log Quad	PWL	Combined
m_π	1.67(93)	1.26(54)	1.51(33)	1.46(27)
$m_{ ho}$	1.67(88)	1.37(39)	1.56(31)	1.50(23)
m_{a_1}	1.40(52)	1.42(27)	1.41(22)	1.41(16)
f_{π}	1.65(22)	1.49(54)	1.60(29)	1.62(17)

 $\gamma = 0.51 \pm 0.16$

• Patella introduced Dirac mode number approach

$$\nu(\lambda) - \nu(\lambda_0) = cV(\lambda^{4/y_m} - \lambda_0^{4/y_m})$$

• He obtains

$$\gamma = 0.371(20)$$

 (Orthogonal: large-N reduction, Keegan talk Wed., along the lines of Hietanen & Narayanan, Koren, Okawa talks Wed.)

Comparison

Method	γ
SF [Bursa et al. 2009]	$0.05 < \gamma < 0.56$
SF [Degrand et al. 2011]	0.31 ± 0.06
Perturbative 4-loop [Pica & Sannino 2010]	0.500
Schwinger-Dyson [Ryttov & Shrock 2010]	0.653
All-orders hypothesis [Pica & Sannino 2010]	0.46
MCRG [Catterall et al. 2011]	$ \gamma < 0.6$
FSS [Del Debbio et al. 2010]	$0.05 < \gamma < 0.20$
FSS [Del Debbio et al. 2010]	0.22 ± 0.06
FSS [JG & Weinberg 2012]	0.51 ± 0.16
Mode number [Patella 2012]	0.371 ± 0.020

- de Forcrand, Pepe and Wiese [1204.4913] have looked at the 2d O(3) spin model with vacuum angle $\theta \approx \pi$
- This theory was suggested as a proxy by Nogradi [1202.4616]
- This allows them to go arbitrarily close to a CFT, and so have walking behavior (Pepe talk Wed).
- This is an asymptotically free theory, so it is an IRCFT when $\theta = \pi$

$$\alpha(L) = \alpha_* - \frac{1}{C \ln(L/L_0)}$$

• They are able to compute the beta function with high precision:

SU(2) with fundamental flavors

- Finish group [Karavirta (talk Mon.), Rantaharju (talk Tues.), Rummukainen, Tuominen] have recently studied $N_f = 4$, 6 and 10.
- Schrödinger functional with clover fermions.
- $N_f = 4$ appears confining and similar to QCD.
- $N_f = 10$ appears conformal, with Banks-Zaks FP.
- $N_f = 6$ is inconclusive probably because it is right near the bottom of the conformal window.
- Previous work (2010) by Bursa, Del Debbio, Keegan, Pica, Pickup found zero of beta function for constant extrapolation and inconclusive for linear extrapolation.
- Voronov, Hayakawa Wed.?

SU(3) with $N_f = 6$ fundamentals

- Recent work of LSD collaboration calculating scattering length.
- Decreased compared to N_f=2.

SU(3) with N_f =10 fundamentals

- Recent work by LSD collaboration using DWF (talk by Fleming Tues afternoon).
- Based on the behavior of m_{π}/f_{π} with m_q they don't expect to be able to fit to χ PT.
- Hard to reconcile with good chiral fits for $N_f = 12$.
- Hyperscaling + fits similar to 12 flavor fits give

 $\chi^2/{
m dof} \sim 1, \quad \gamma \approx 1$

 More data on more volumes needs to be added: is there an F problem with FSS?

Four fermion couplings

- It is of interest to see whether these can push a theory out of the conformal window.
- The four fermion coupling could provide a tunable way to be arbitrarily close to that window: as much walking as desired.
- Catterall (Mon talk) has looked at gauged NJL model on lattice.
- No evidence of second order critical line.
- Further work, on models inside the conformal window, needs to be performed.

Conclusions

- Two theories have been studied in depth:
 - SU(3) 12-flavor fundamental
 - SU(2) two-flavor adjoint
- In the first case the controversy has not been resolved and there are claims that cannot be reconciled: more large lattice studies needed, more efforts to understand discrepancies.
- In the second case there is consensus but large lattice spectral studies like LHC should be performed to see how different it is from 12 flavors.
- One theory (10 flavors) may have a γ that is large enough for WTC

- Hyperscaling $M \sim m^{1/y_M}$ is based on crude approximations such as $\gamma = \gamma_*$
- It would be good to have predictions for corrections to these formulas and to be able to fit these corrections from lattice data: different γ's for different channels? (Kurachi talk Thurs.?)
- Similarly, in FSS we should attempt fits to the scaling violations.
- Schrödinger functional studies need to be repeated on larger lattices to reduce lattice artifacts.
- Finite temperature transition needs to be pushed harder.