Thermodynamics of the unitary Fermi gas

Olga Goulko in collaboration with Matthew Wingate

Ludwig-Maximilians-University, Munich

28 June 2012

What is a Fermi gas?

A Fermi gas is a dilute system of fermions

Examples:

- electrons inside a metal
- quark-gluon plasma in the inner core of a neutron star
- atomic gas e.g. of 40 K or 6 Li atoms (\Rightarrow experiment!)

experiment by the JILA group (University of Colorado)

low temperature: quantum phenomena become important identical fermions \Rightarrow no s-wave scattering \Rightarrow ideal gas model

What is a unitary Fermi gas?

Fermions of two species \Rightarrow interactions become important Low-energy interactions are characterised by the scattering length *a*

What is interesting about unitarity?

- No length scales associated with interactions \Rightarrow universal behaviour
- Only relevant parameters: temperature and density
- High-temperature superfluidity

neutron star	$T_c = 10^6 \text{K}$	$T_{c} = 10^{-5} T_{F}$
high- T_c superconductor	$T_{c} = 10^{2}$ K	$T_{c} = 10^{-3} T_{F}$
atomic Fermi gas	$T_{c} = 10^{-7} K$	$T_{c} = 10^{-1} T_{F}$

• Experimental data available

What is interesting about unitarity?

Strong interactions \Rightarrow No small parameter for perturbation theory

No exact theory for Fermi gas at unitarity!

What to do?

- Approximate schemes (e.g. mean-field theory) involve uncontrolled approximations
- Numerical Methods

 \Longrightarrow Good results for critical temperature and other quantities

Project: Equation of state and temperature dependence of the contact density of the unitary Fermi gas near the critical point Method: Determinant Diagrammatic Monte Carlo (DDMC) algorithm [Burovski, Prokof'ev, Svistunov, Troyer (2006)]

Simplest lattice model for two-particle scattering

- Non-relativistic fermions
- Contact interaction between spin up and spin down
- On-site attraction U < 0 tuned to describe unitarity
- Grand canonical ensemble
- Finite 3D simple cubic lattice, periodic boundary conditions
- Continuum limit can be taken by extrapolation to zero density

$$H = \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{x}} c_{\mathbf{x}\uparrow}^{\dagger} c_{\mathbf{x}\uparrow} c_{\mathbf{x}\downarrow}^{\dagger} c_{\mathbf{x}\downarrow},$$

where $\epsilon_{\mathbf{k}} = \frac{1}{m} \sum_{j=1}^{3} (1 - \cos k_j)$ is the discrete FT of $\frac{-\nabla^2}{2m}$.

Finite temperature formalism

Grand canonical partition function in imaginary time interaction picture: $Z = \text{Tr}e^{-\beta H}$:

Sign problem!

The diagrams of each order can be written as the product of two matrix determinants [Rubtsov, Savkin, Lichtenstein (2005)]

$$Z = \sum_{
ho, S_{
ho}} (-U)^{
ho} \det \mathbf{A}^{\uparrow}(S_{
ho}) \det \mathbf{A}^{\downarrow}(S_{
ho}),$$

where S_p is the vertex configuration and the matrix entries are free (finite temperature) propagators

Continuum limit

physical scale $\nu = nb^3$

•
$$\nu = \langle \sum_{\sigma} c^{\dagger}_{\mathbf{x}\sigma} c_{\mathbf{x}\sigma} \rangle$$

dimensionless
filling factor

- *n* particle density
- b lattice spacing

- ullet continuum limit b
 ightarrow 0 corresponds to u
 ightarrow 0
- leading order lattice corrections $\propto b \propto
 u^{1/3}$

Results at the critical point:

$$T_c/\varepsilon_F = 0.171(5)$$

 $\mu/\varepsilon_F = 0.429(7)$
 $E/E_{FG} = 0.440(15)$
 $C/\varepsilon_F^2 = 0.1101(9)$

and generalisation to the imbalanced case ($\mu_{\uparrow}\neq\mu_{\downarrow})$ for small imbalances

[Phys. Rev. A 82, 053621 (2010), Lattice Proceedings 2009, 2010]

Temperatures beyond T_c

- The lattice critical temperature $T_c(\mu)$ for different lattice μ is known from previous work
- Use the lattice T_c as a benchmark to fix the temperature scale
- \bullet Simplest approach: hold lattice μ fixed and vary the lattice ${\cal T}$
- Set lattice spacing independent of temperature:

$$b(\mu, T) = b(\mu, T_c) = \left(\frac{\nu(\mu, T_c)}{n(\mu, T_c)}\right)^{1/3}$$

• Fix ratio $r = T(\mu)/T_c(\mu)$ for each lattice μ and perform continuum extrapolations as at T_c

Temperatures beyond T_c

This approach works sufficiently close to the critical point.

Preliminary results: chemical potential

Preliminary results: energy per particle

The contact can be interpreted as a measure for the local pair density [Tan (2008), Braaten (2010)].

Definition contact [Werner and Castin (2010)]:

 $C = m^2 g_0 E_{\text{int}},$

where g_0 is the physical coupling constant.

The contact density is C = C/V and has units k_F^4 .

Expressed through lattice quantities: $C/k_F^4 = \frac{UE_{int}}{4L^3k_F^4}$

Preliminary results: contact density

- Lattice Field Theory is a useful tool for studying strongly interacting systems in condensed matter physics
- The DDMC algorithm can be applied to calculate the critical temperature of the Fermi gas at unitarity
- Generalisation to temperatures above and below T_c
- Temperature dependence of the chemical potential, the contact density and the energy density