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Two-dimensional models of QCD – abelian case

Goal: gain insight into non-perturbative regime of QCD-like
theories by studying models in 1+1 dimensions.

LQCD-like = 1
g2

[
−1

2TrFµνFµν +
∑Nf

i=1 ψ̄i (i /D −mi )ψi

]

Start with abelian U(1) gauge group: QED2:

Free electrodynamics in 1+1 dimensions – no true dynamics
(at least in R2) but confining linear potential for probe charges

Schwinger, 1962: QED2 with single massless flavour: solvable
using bosonisation trick, exhibits charge screening ∀Qext .

Coleman, Jackiw, Susskind, 1975: perturbative addition of
small mass. Only integer charges Qext are screened for
non-zero mass (string breaking).

Plethora of numerical studies (most only for Qext ∈ Z) both
using bosonisation & lattice methods (and also DLCQ). Still
field of active research (e.g. Dürr, 2012).
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Two-dimensional models of QCD – non-abelian case

Non-abelian Schwinger model ≡ QCD2 (with fundamental
matter) – spectrum predictions exist (Frishman,
Sonnenschein, 1997, 1998)

’t Hooft,1974: solution of large-N limit of QCD2

Limitation of large-N limit of fundamental matter – quenched
fermion dynamics. Idea: use fermions in two-index
representations of SU(N), e.g. the adjoint.

Adjoint fermions analysed theoretically (e.g. Kutasov, 1994)
and by DLCQ (e.g. Bhanot, Demeterfi, Klebanov, 1993) but
hardly any lattice calculation in 1+1 dimensions.
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Wilson loops: confinement vs. charge screening

Square Wilson loop: W (R,T ) ∼=
∑

i Cie
−Ei (R)T – energies of

pair of opposite static charges:

E0(R) ∼= σR – confinement (pure gauge QCD4, Creutz, 1980)

E0(R) ∼= Const(R) – charge screening

Full QCD4 – charge screening at large distances & 1fm
(“string breaking”)

– hard to observe on the lattice.

Conjecture: small overlap of Wilson loops onto broken-string
ground state. Inclusion of other observables (static-light
mesons) necessary (Bali et al., 2005).
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Wilson loops and string breaking in QED2

In terms of confinement/screening QED2 resembles QCD4.

Extract 1st excited state: W (R,T ) ∼= C0e
−E0(R)T + C1e

−E1(R)T
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Fractional charges

Despite numerous analyses for Qext ∈ Z, equation (CJS, 1975)

σ = #mg (1− cos(2πQext))

no lattice simulations for non-integer Qext (though note
Hamer, Kogut, Crewther, Mazzolini, 1982).

“Charged Wilson loop”:

WQ(R,T ) ≡ exp{iQg
∮
� dlµAµ(l)} =

(
W (R,T )

)Q

For WQ in QED2 with light fermions we found string tension
σQ = 0 for every Q analysed.

To understand this, we came back to pure gauge U(1) theory.

σQ with Q /∈ Z is “projected” to the closest integer value,
independent on lattice size up to V ≈ 200× 200.

Mateusz Koreń Screening in two-dimensional lattice gauge theories



Introduction String breaking in QED2 Non-integer charges? Conclusions & outlook

Fractional charges

Despite numerous analyses for Qext ∈ Z, equation (CJS, 1975)

σ = #mg (1− cos(2πQext))

no lattice simulations for non-integer Qext (though note
Hamer, Kogut, Crewther, Mazzolini, 1982).

“Charged Wilson loop”:

WQ(R,T ) ≡ exp{iQg
∮
� dlµAµ(l)} =

(
W (R,T )

)Q
For WQ in QED2 with light fermions we found string tension
σQ = 0 for every Q analysed.

To understand this, we came back to pure gauge U(1) theory.

σQ with Q /∈ Z is “projected” to the closest integer value,
independent on lattice size up to V ≈ 200× 200.
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Fractional charges
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Fractional charges cntd.

Manton, 1984: Continuum QED2 on a (spatial) circle of
radius 1

Pure gauge theory: one can set the gauge so that Ax(x , t) is
x-independent and Ax ∈ [0, 1) – configuration space is
periodic.

One obtains a quantum-mechanical system with Hamiltonian

H = πL
Q2 Ȧx

2
and functions in Hilbert space satisfying

ψ(Ax = 0) = ψ(Ax = 1).

Only integer-charged states satisfy periodicity. A state with
arbitrary charge Q gets projected to integer charges:

〈PQ(Ax , τ)PQ(Ax , 0)〉 =
∑

n=0 e−n2e2πτ
(

sin(π(Q−n))
π(Q−n)

)2
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Fractional charges cntd.

Ansatz for Monte Carlo: Wilson loops with Q ∈ Z as on infinite
lattice, decomposition to integer-charged basis for Q /∈ Z:

WQ(R,T ) =
∑∞

i=0

( Ii (β)
I0(β)

)RT ( sin(π(Q−i))
π(Q−i)

)2R+2T
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Monte Carlo Wilson loop data vs. the ansatz (not a fit).
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Conclusions & outlook

Two-dimensional theories share many intrinsic features with
those in 4 dimensions and can be used as a test bed for
concepts relating to QCD4.

Wilson loops can be used as a probe of string breaking but
very large statistics is required as overlap on the ground state
becomes poor.

“Topological finite-size effect” is an obstacle to implement
fractional charges in a lattice simulation (different boundary
conditions?).

Plans for future:

Move to non-abelian theories, in particular with adjoint
matter, which are of great interest recently (technicolor,
large-N equivalences).
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Mateusz Koreń Screening in two-dimensional lattice gauge theories


	Introduction
	

	String breaking in QED2
	

	Non-integer charges?
	

	Conclusions & outlook
	


