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Introduction
®0

Two-dimensional models of QCD — abelian case

@ Goal: gain insight into non-perturbative regime of QCD-like
theories by studying models in 141 dimensions.

@ LQCD-like = é [—%TYFWFW + Z,’-V:fl Vi(iD — mi)%}
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Two-dimensional models of QCD — abelian case

@ Goal: gain insight into non-perturbative regime of QCD-like
theories by studying models in 141 dimensions.

@ LQCD-like = é [—%TYFWFW + Z,’-V:fl Vi(iD — mi)%}

e Start with abelian U(1) gauge group: QED3:
o Free electrodynamics in 141 dimensions — no true dynamics
(at least in R?) but confining linear potential for probe charges

o Schwinger, 1962: QED, with single massless flavour: solvable
using bosonisation trick, exhibits charge screening VQex:.
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Two-dimensional models of QCD — abelian case

@ Goal: gain insight into non-perturbative regime of QCD-like
theories by studying models in 141 dimensions.

@ LQCD-like = é [—%TYFWFW + Z,’-V:fl Vi(iD — mi)%}

e Start with abelian U(1) gauge group: QED3:
o Free electrodynamics in 141 dimensions — no true dynamics
(at least in R?) but confining linear potential for probe charges

o Schwinger, 1962: QED, with single massless flavour: solvable
using bosonisation trick, exhibits charge screening VQex:.

o Coleman, Jackiw, Susskind, 1975: perturbative addition of
small mass. Only integer charges Qex: are screened for
non-zero mass (string breaking).

o Plethora of numerical studies (most only for Qe € Z) both
using bosonisation & lattice methods (and also DLCQ). Still
field of active research (e.g. Diirr, 2012).
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Two-dimensional models of QCD — non-abelian case

@ Non-abelian Schwinger model = QCD; (with fundamental
matter) — spectrum predictions exist (Frishman,
Sonnenschein, 1997, 1998)
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@ Non-abelian Schwinger model = QCD; (with fundamental
matter) — spectrum predictions exist (Frishman,
Sonnenschein, 1997, 1998)

@ 't Hooft,1974: solution of large-N limit of QCD»

o Limitation of large-N limit of fundamental matter — quenched
fermion dynamics. Idea: use fermions in two-index
representations of SU(N), e.g. the adjoint.
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Two-dimensional models of QCD — non-abelian case

@ Non-abelian Schwinger model = QCD; (with fundamental
matter) — spectrum predictions exist (Frishman,
Sonnenschein, 1997, 1998)

@ 't Hooft,1974: solution of large-N limit of QCD»

o Limitation of large-N limit of fundamental matter — quenched
fermion dynamics. Idea: use fermions in two-index
representations of SU(N), e.g. the adjoint.

e Adjoint fermions analysed theoretically (e.g. Kutasov, 1994)
and by DLCQ (e.g. Bhanot, Demeterfi, Klebanov, 1993) but
hardly any lattice calculation in 141 dimensions.
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String breaking in QED;
®0

Wilson loops: confinement vs. charge screening

o Square Wilson loop: W(R, T) = Y. Gie E(RIT — energies of
pair of opposite static charges:
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String breaking in QED;
®0

Wilson loops: confinement vs. charge screening

o Square Wilson loop: W(R, T) = Y. Gie E(RIT — energies of
pair of opposite static charges:
o Eo(R) = oR — confinement (pure gauge QCDy4, Creutz, 1980)
o Ey(R) = Const(R) — charge screening

o Full QCD4 — charge screening at large distances 2> 1fm
(“string breaking”)
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String breaking in QED;
®0

Wilson loops: confinement vs. charge screening

o Square Wilson loop: W(R, T) = Y. Gie E(RIT — energies of
pair of opposite static charges:
o Eo(R) = oR — confinement (pure gauge QCDy4, Creutz, 1980)
o Ey(R) = Const(R) — charge screening
o Full QCD4 — charge screening at large distances 2> 1fm
(“string breaking”) — hard to observe on the lattice.

@ Conjecture: small overlap of Wilson loops onto broken-string
ground state. Inclusion of other observables (static-light
mesons) necessary (Bali et al., 2005).
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String breaking in QED;

oe

Wilson loops and string breaking in QED,

In terms of confinement/screening QED, resembles QCDy.
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Wilson loops and string breaking in QED,

In terms of confinement/screening QED, resembles QCDy.
Extract 1st excited state: W(R, T) = Coe B(RT 1 e BUR)T
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String breaking in QED;
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Wilson loops and string breaking in QED,

In terms of confinement/screening QED, resembles QCDy.
Extract 1st excited state: W(R, T) = Coe B(RT 1 e BUR)T
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Non-integer charges?
®00

Fractional charges

@ Despite numerous analyses for Qext € Z, equation (CJS, 1975)
o =#mg (1 — cos(27 Qext))

no lattice simulations for non-integer Qex (though note
Hamer, Kogut, Crewther, Mazzolini, 1982).

@ "“Charged Wilson loop”:
Wo(R, T) = exp{iQg §y dlAu(1)} = (W(R, T))?
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Non-integer charges?
®00

Fractional charges

@ Despite numerous analyses for Qext € Z, equation (CJS, 1975)
o =#mg (1 — cos(27 Qext))

no lattice simulations for non-integer Qex (though note
Hamer, Kogut, Crewther, Mazzolini, 1982).

@ "“Charged Wilson loop”:

Wo(R, T) = exp{iQg §y dlAu(1)} = (W(R, T))?
e For Wq in QED> with light fermions we found string tension
oq = 0 for every Q analysed.
e To understand this, we came back to pure gauge U(1) theory.
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Non-integer charges?
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Fractional charges
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Non-integer charges?
®00

Fractional charges

@ Despite numerous analyses for Qext € Z, equation (CJS, 1975)
o =#mg (1 — cos(27 Qext))
no lattice simulations for non-integer Qex (though note
Hamer, Kogut, Crewther, Mazzolini, 1982).
@ "“Charged Wilson loop”:

Wo(R, T) = exp{iQg §y dlAu(1)} = (W(R, T))?
e For Wq in QED> with light fermions we found string tension
oq = 0 for every Q analysed.
e To understand this, we came back to pure gauge U(1) theory.

e og with Q ¢ Z is “projected” to the closest integer value,
independent on lattice size up to V &~ 200 x 200.
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Non-integer charges?
oeo

Fractional charges cntd.

e Manton, 1984: Continuum QED; on a (spatial) circle of
radius 1

@ Pure gauge theory: one can set the gauge so that A.(x,t) is
x-independent and A, € [0,1) — configuration space is
periodic.
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Non-integer charges?
oeo

Fractional charges cntd.

e Manton, 1984: Continuum QED; on a (spatial) circle of
radius 1

@ Pure gauge theory: one can set the gauge so that A.(x,t) is
x-independent and A, € [0,1) — configuration space is
periodic.

@ One obtains a quantum-mechanical system with Hamiltonian
H= %A'X2 and functions in Hilbert space satisfying
¢(AX = 0) = w(Ax = 1)'

@ Only integer-charged states satisfy periodicity. A state with
arbitrary charge Q gets projected to integer charges:

(PQ(Ac, T)PQ(A,0) = 52, g e~ (Fnlr@-an)
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Non-integer charges?
ooe

Fractional charges cntd.

Ansatz for Monte Carlo: Wilson loops with @ € Z as on infinite
lattice, decomposition to integer-charged basis for Q ¢ Z:
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Monte Carlo Wilson loop data vs. the ansatz (not a fit).
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Non-integer charges?
ooe

Fractional charges cntd.

Ansatz for Monte Carlo: Wilson loops with @ € Z as on infinite
lattice, decomposition to integer-charged basis for Q ¢ Z:

Wo(R, T) =3, (Ii(:B))RT(Sin(W(Q—i)))2R+2T
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One-exponent fits to discrete data generated using the ansatz vs. Monte Carlo results
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Conclusions & outlook
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Conclusions & outlook

@ Two-dimensional theories share many intrinsic features with
those in 4 dimensions and can be used as a test bed for
concepts relating to QCDy4.

@ Wilson loops can be used as a probe of string breaking but
very large statistics is required as overlap on the ground state
becomes poor.

o “Topological finite-size effect” is an obstacle to implement
fractional charges in a lattice simulation (different boundary
conditions?).
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Conclusions & outlook

@ Two-dimensional theories share many intrinsic features with
those in 4 dimensions and can be used as a test bed for
concepts relating to QCDy4.

@ Wilson loops can be used as a probe of string breaking but
very large statistics is required as overlap on the ground state
becomes poor.

o “Topological finite-size effect” is an obstacle to implement
fractional charges in a lattice simulation (different boundary
conditions?).

Plans for future:

@ Move to non-abelian theories, in particular with adjoint
matter, which are of great interest recently (technicolor,
large-N equivalences).
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