Introduction	String breaking in QED ₂	Non-integer charges?	Conc

Conclusions & outlook

Screening in two-dimensional lattice gauge theories

Mateusz Koreń

Jagiellonian University, Cracow

In collaboration with Piotr Korcyl

Project carried within the MPD programme "Physics of Complex Systems" of the Foundation for Polish Science and co-financed by the European Regional Development Fund in the framework of the Innovative Economy Programme.

Lattice 2012, Cairns, 28-06-2012

Introd	uction

String breaking in QED₂

Non-integer charges?

 $\underset{\bigcirc}{\text{Conclusions \& outlook}}$

Table of contents

- 2 String breaking in QED₂
- 3 Non-integer charges?
- 4 Conclusions & outlook

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
•0			
Tura dim	ancienal medale of	O(D) shallon	
	iensional models of	(J(J) - abenan)	ase

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

(4月) (4日) (4日)

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook	
•0				
Two dimen	sional models of (OCD - abelian c	2264	

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

- Start with abelian U(1) gauge group: QED₂:
 - Free electrodynamics in 1+1 dimensions no true dynamics (at least in \mathbb{R}^2) but confining linear potential for probe charges
 - Schwinger, 1962: QED₂ with single massless flavour: solvable using bosonisation trick, exhibits charge screening ∀Q_{ext}.

- 4 回 ト 4 回 ト 4 回 ト

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
•0			
Two_dimen	sional models of ()CD – abelian cas	

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

- Start with abelian U(1) gauge group: QED₂:
 - Free electrodynamics in 1+1 dimensions no true dynamics (at least in \mathbb{R}^2) but confining linear potential for probe charges
 - Schwinger, 1962: QED₂ with single massless flavour: solvable using bosonisation trick, exhibits charge screening ∀Q_{ext}.
 - Coleman, Jackiw, Susskind, 1975: perturbative addition of small mass. Only integer charges Q_{ext} are screened for non-zero mass (string breaking).
 - Plethora of numerical studies (most only for $Q_{ext} \in \mathbb{Z}$) both using bosonisation & lattice methods (and also DLCQ). Still field of active research (e.g. Dürr, 2012).

Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) – spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)

- Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)
- 't Hooft,1974: solution of large-N limit of QCD₂
- Limitation of large-*N* limit of fundamental matter quenched fermion dynamics. Idea: use fermions in two-index representations of *SU*(*N*), e.g. the adjoint.

Introduction ○●	String breaking in QED ₂ 00	Non-integer charges?	
Two-dimens	sional models of Q	CD – non-abelian	case

- Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)
- 't Hooft,1974: solution of large-N limit of QCD₂
- Limitation of large-*N* limit of fundamental matter quenched fermion dynamics. Idea: use fermions in two-index representations of *SU*(*N*), e.g. the adjoint.
- Adjoint fermions analysed theoretically (e.g. Kutasov, 1994) and by DLCQ (e.g. Bhanot, Demeterfi, Klebanov, 1993) but hardly any lattice calculation in 1+1 dimensions.

• Square Wilson loop: $W(R, T) \cong \sum_{i} C_{i} e^{-E_{i}(R)T}$ – energies of pair of opposite static charges:

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Square Wilson loop: $W(R, T) \cong \sum_{i} C_{i} e^{-E_{i}(R)T}$ energies of pair of opposite static charges:
 - $E_0(R) \cong \sigma R$ confinement (pure gauge QCD₄, Creutz, 1980)
 - $E_0(R) \cong Const(R)$ charge screening
- Full QCD₄ charge screening at large distances $\gtrsim 1 \mbox{\it fm}$ ("string breaking")

イロト イポト イラト イラト 二日

- Square Wilson loop: $W(R, T) \cong \sum_{i} C_{i}e^{-E_{i}(R)T}$ energies of pair of opposite static charges:
 - $E_0(R) \cong \sigma R$ confinement (pure gauge QCD₄, Creutz, 1980)
 - $E_0(R) \cong Const(R)$ charge screening
- Full QCD₄ charge screening at large distances $\gtrsim 1 fm$ ("string breaking") hard to observe on the lattice.
- Conjecture: small overlap of Wilson loops onto broken-string ground state. Inclusion of other observables (static-light mesons) necessary (Bali et al., 2005).

In terms of confinement/screening QED₂ resembles QCD₄.

In terms of confinement/screening QED_2 resembles QCD_4 .

Extract 1st excited state: $W(R, T) \cong C_0 e^{-E_0(R)T} + C_1 e^{-E_1(R)T}$

Wilson loop energies, $g^{-2} = 1.5$, $\kappa = 0.245$, $V = 24 \times 24$.

In terms of confinement/screening QED₂ resembles QCD₄. Extract 1st excited state: $W(R, T) \cong C_0 e^{-E_0(R)T} + C_1 e^{-E_1(R)T}$

Mateusz Koreń Screening in two-dimensional lattice gauge theories

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
	00	●○○	O
Fractiona	al charges		

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \# mg \left(1 - \cos(2\pi Q_{ext})\right)$$

no lattice simulations for non-integer Q_{ext} (though note Hamer, Kogut, Crewther, Mazzolini, 1982).

• "Charged Wilson loop":

$$W_Q(R,T) \equiv \exp\{iQg \oint_{\Box} dl_\mu A_\mu(I)\} = (W(R,T))^Q$$

・ 同下 ・ ヨト ・ ヨト

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
	00	●○○	O
Fractiona	al charges		

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \# mg \left(1 - \cos(2\pi Q_{ext})\right)$$

no lattice simulations for non-integer Q_{ext} (though note Hamer, Kogut, Crewther, Mazzolini, 1982).

• "Charged Wilson loop":

$$W_Q(R, T) \equiv \exp\{iQg \oint_{\Box} dl_\mu A_\mu(I)\} = (W(R, T))^Q$$

- For W_Q in QED₂ with light fermions we found string tension $\sigma_Q = 0$ for every Q analysed.
- To understand this, we came back to pure gauge U(1) theory.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	String breaking in QED ₂

Non-integer charges? ●○○ $\underset{\bigcirc}{\text{Conclusions \& outlook}}$

3

Fractional charges

Introduction	String breaking in QED ₂ 00	Non-integer charges? ●○○	Conclusions & outlook
Fractiona	al charges		

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \# mg \left(1 - \cos(2\pi Q_{ext})\right)$$

no lattice simulations for non-integer Q_{ext} (though note Hamer, Kogut, Crewther, Mazzolini, 1982).

• "Charged Wilson loop":

$$W_Q(R,T) \equiv \exp\{iQg \oint_{\Box} dl_{\mu}A_{\mu}(I)\} = (W(R,T))^Q$$

- For W_Q in QED₂ with light fermions we found string tension $\sigma_Q = 0$ for every Q analysed.
- To understand this, we came back to pure gauge U(1) theory.
- σ_Q with $Q \notin \mathbb{Z}$ is "projected" to the closest integer value, independent on lattice size up to $V \approx 200 \times 200$.

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
	00	○●○	O
Fractional	charges cntd.		

- Manton, 1984: Continuum QED₂ on a (spatial) circle of radius 1
- Pure gauge theory: one can set the gauge so that A_x(x, t) is x-independent and A_x ∈ [0, 1) - configuration space is periodic.

(4月) (4日) (4日)

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
	00	○●○	O
Fractiona	l charges cntd.		

- Manton, 1984: Continuum QED₂ on a (spatial) circle of radius 1
- Pure gauge theory: one can set the gauge so that A_x(x, t) is x-independent and A_x ∈ [0, 1) configuration space is periodic.
- One obtains a quantum-mechanical system with Hamiltonian $H = \frac{\pi L}{Q^2} \dot{A_x}^2$ and functions in Hilbert space satisfying $\psi(A_x = 0) = \psi(A_x = 1)$.
- Only integer-charged states satisfy periodicity. A state with arbitrary charge *Q* gets projected to integer charges:

$$\langle P_Q(A_x,\tau)P_Q(A_x,0)\rangle = \sum_{n=0} e^{-n^2 e^2 \pi \tau} \left(\frac{\sin(\pi(Q-n))}{\pi(Q-n)}\right)^2$$

- 4 回 ト 4 日 ト 4 日 ト

Introduction	String breaking in QED ₂ 00	Non-integer charges? ○○●	Conclusions & outlook
Fractional d	charges cntd.		

Ansatz for Monte Carlo: Wilson loops with $Q \in \mathbb{Z}$ as on infinite lattice, decomposition to integer-charged basis for $Q \notin \mathbb{Z}$:

Monte Carlo Wilson loop data vs. the ansatz (not a fit).

< ∃ >

Introduction	String breaking in QED ₂	Non-integer charges?	Conclusions & outlook
	00	○○●	O
Fractiona	L charges cntd		

Ansatz for Monte Carlo: Wilson loops with $Q \in \mathbb{Z}$ as on infinite lattice, decomposition to integer-charged basis for $Q \notin \mathbb{Z}$:

One-exponent fits to discrete data generated using the ansatz vs. Monte Carlo results

(4月) (4日) (4日)

Introduction	String breaking in QED ₂ 00	Non-integer charges?	Conclusions & outlook •
Conclusior	ns & outlook		

- Two-dimensional theories share many intrinsic features with those in 4 dimensions and can be used as a test bed for concepts relating to QCD₄.
- Wilson loops can be used as a probe of string breaking but very large statistics is required as overlap on the ground state becomes poor.
- "Topological finite-size effect" is an obstacle to implement fractional charges in a lattice simulation (different boundary conditions?).

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	String breaking in QED ₂ 00	Non-integer charges?	Conclusions & outlook •
Conclusion	s & outlook		

- Two-dimensional theories share many intrinsic features with those in 4 dimensions and can be used as a test bed for concepts relating to QCD₄.
- Wilson loops can be used as a probe of string breaking but very large statistics is required as overlap on the ground state becomes poor.
- "Topological finite-size effect" is an obstacle to implement fractional charges in a lattice simulation (different boundary conditions?).

Plans for future:

• Move to non-abelian theories, in particular with adjoint matter, which are of great interest recently (technicolor, large-*N* equivalences).

- 4 同下 4 日下 4 日下