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Technicolor model is an attractive candidate for 
the dynamical origin of the Electroweak symmetry 

breaking, though one based on naive scale up of 
QCD is phenomenologically disfavored...

Walking
Technicolor

A theory which has an (approximate) infrared 
fixed point with large mass anomalous dimension 

might be viable

Yamawaki-Bando-Matumoto (1986)
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Walking theory ---  any example?

Large flavor QCD
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Walking theory ---  any example?



Does this IRFP exist beyond perturbation?
What is the number of critical flavor?

Large flavor QCD

Walking theory ---  any example?

Fully non-perturvative (lattice) study is desirable

Several ways of checking infrared conformality

 measure the running coupling
 study the spectrum
 ....

We discuss this here



2. Hyperscaling relation



Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010

Hyperscaling relation

relations between physical quantities and 
the fermion mass in a mass-deformed 
infrared conformal theory
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Hyperscaling relation

 Consider a theory which has an IRFP
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 Consider a theory which has an IRFP
 Deform it by introducing small fermion 

    bare mass

Hadrons emerge at this scale

m

Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010

Hyperscaling relation
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 Consider a theory which has an IRFP
 Deform it by introducing small fermion 

    bare mass

Hadrons emerge at this scale

m

a scale (in the case of lattice, one can consider                  )

(normalized) bare quark mass:

Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derivedMH

MH ' (const.) µ m̂1/1+�⇤

mass anomalous dimension at the fixed point

Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010

Hyperscaling relation

m
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 Consider a theory which has an IRFP
 Deform it by introducing small fermion 

    bare mass

Hadrons emerge at this scale

When one considers a theory in a finite volume

MH = L

�1
f (x)

where
x = L m̂

1/(1+�⇤)ˆ L̂ ⌘ Lµ

⇠ L4

Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derived
Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derivedMH m

Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010

Hyperscaling relation

m



Results of lattice simulation with various values of input 
should satisfy the hyperscaling relation (with an appropriate value of      )

if the theory has an IRFP

(L,m)

�⇤

Many lattice groups use this method to judge whether a theory 
is conformal, and if it is, to estimate the value of �⇤

ˆ ˆ
(Wouldn’t it be interesting to see that all the data you have
with different values of             align in a single curve?)

(L,m)ˆ ˆ

Hyperscaling relation



Hyperscaling relation

Results of lattice simulation with various values of input 
should satisfy the hyperscaling relation (with an appropriate value of      )

if the theory has an IRFP
 
Couple of questions arise here:   

 How small       has be to observe the scaling?
   (What is the form of correction when it’s not small enough?)

 When the original theory does not have an IRFP, 
   how and how much the scaling relation is violated?

Schwinger-Dyson equation is a useful tool for such studies

m

analytic understanding can be obtained (to a certain extent)

numerical calculations can be easily done in a wide range of parameter 
space on your PC

we know the phase structure, and a value of      for a given theory�⇤

�⇤
(L,m)ˆ ˆ



3. SD equation analysis



Schwinger-Dyson equation

Self-consistent equation for the 
full fermion propagator

= + １PI

１particle irreducible diagram

in equation...

bare fermion propagator



C2 =
N2

C � 1
2NC

ḡ(p, k) : running coupling

We adopted...
    Improved ladder approximation

coupled equation for
A(p2), B(p2)

mass function
⌃(p2) ⌘ B(p2)/A(p2)

Schwinger-Dyson equation

Self-consistent equation for the 
full fermion propagator



advantage of using the SD equation

We first generate “data” for various values of 
through the SD equation, and do the hyperscaling 
analysis by using those data

we know whether a specific theory is in the chiral-
symmetry-breaking phase or not, as well as a value 
of the mass anomalous dimension of that theory

Example: SU(3) gauge theory
↵cr = ⇡/4

N cr
f ' 11.9

：confining
：conformalNf > N cr

f

Nf < N cr
f

,
✓

! ⌘
r

1� ↵⇤
↵cr

◆
�⇤ = 1� !

strategy
(L,m)ˆˆ



advantage of using the SD equation

By comparing the conclusion drawn by the hyperscaling 
analysis to the above answer, we can investigate  
properties of the hyperscaling analysis itself

Example: SU(3) gauge theory
↵cr = ⇡/4

N cr
f ' 11.9

：confining
：conformalNf > N cr

f

Nf < N cr
f

,

�⇤ = 1� !

strategy

we know whether a specific theory is in the chiral-
symmetry-breaking phase or not, as well as a value 
of the mass anomalous dimension of that theory

✓
! ⌘

r
1� ↵⇤

↵cr

◆



to put these in a finite-size box, all we have to do is 
replacing continuous momentum by the discrete one:

to generate data for            , we formulate the SD eq. 
in a finite-volume spacetime

SD equation in the infinite volume:

Z 1

�1
dp f(p) �! 2⇡

L

1X

n=�1
f(pn)p �! pn =

2⇡n

L
,

Then, do the iteration to find a solution

(L,m)ˆˆ



setup for the current study 
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Running coupling is approximated by the step function

fixed by Nc, Nf

Energy scale where the coupling begins to run

2-loop running coupling of the SU(Nc) gauge theory 



example of the solution

NC = 3

Nf = 12

L⇤ = 30

m/⇤ = 0.2

p2/⇤2

�(p2) ⌘ B(p2)/A(p2)
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we take the “pole mass”       as a physical quantitymp

�(p2 = m2
p) = mp

mp ⇠MH
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relation between             and           for various values ofm/⇤mP /⇤ L⇤
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We can obtain data
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relation between             and           for various values ofm/⇤mP /⇤ L⇤

L⇤ = 12
L⇤ = 16
L⇤ = 20
L⇤ = 25
L⇤ = 30

We can obtain data
only formp/⇤ > O(0.1)

MH = L

�1
f (x)

where
x = L m̂

1/(1+�⇤)

Let’s do finite-volume scaling
by using these data

ˆ
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SU(3) gauge theory with 12 fundamental fermion

� = 0.5 ⇠ 0.6good scaling behavior for



SU(3) gauge theory with 12 fundamental fermion

� = 0.5 ⇠ 0.6good scaling behavior for

but the actual value for                is...Nf = 12

�⇤ = 1�
r

1� ↵⇤
↵cr

' 0.8



SU(3) gauge theory with 12 fundamental fermion

� = 0.5 ⇠ 0.6good scaling behavior for

From the analytic solution of the SD equation, we can 
understand the above deviation is coming from the fact 
that the fermion mass, which was introduced to probe 
the IR conformality, itself is breaking the IR conformality

but the actual value for                is...Nf = 12

�⇤ = 1�
r

1� ↵⇤
↵cr

' 0.8



m/⇤ = ⇠

"
�(1� �⇤)
�( 2��⇤

2 )2

⇣mP

⇤

⌘1+�⇤
+

�(�1 + �⇤)
�(�⇤

2 )2
⇣mP

⇤

⌘3��⇤
#

Relation between       and        which is obtained 
from the analytic solution of the SD equation

mPm
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Effective anomalous dimension
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Effective anomalous dimension

SU(3) fundamental
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Another question: 
  when the theory does not have an IRFP 
  (namely, in the chiral symmetry breaking phase ), 
  how and how much the scaling relation is violated?

We show two examples:
  SU(3),  9 flavor:  deeply broken
  SU(3),  11 flavor:  close to the critical flavor
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Summary
  Hyperscaling relation was investigated through the SD equation.

  Importance of the mass correction was discussed.
            It is very possible that the shift of      due to the mass correction 
            differs for different observables.  When the lattice data show the 
            good scaling for each physical quantity, but inconsistent values of 
                (which means global fit with universal     gives bad chi^2/dof), 
            it is worth doing fitting with a universal     + SD-inspired mass
            correction term for each physical quantity.  It could significantly
            reduce chi^2/dof, which actually happened in the case of our
            Nf=12 lattice data. (talk by Ohki)

  Even after lattice studies of the large flavor QCD became popular, 
    the SD equation is still a useful tool to give information from different
    point of view.
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