A surprise with many-flavor staggered fermions in the strong coupling limit

Wolfgang Unger, ETH Zürich with Philippe de Forcrand, ETH Zürich/CERN, Seyong Kim, Sejong University

Lattice 2012, Cairns 28.06.2012

ΞTΗ

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Many flavor staggered fermions

- Large N_f Strong Coupling QCD: A Case Against Mean Field
- **2** Chiral Restoration for Large $N_{\rm f}$
- **3** Tests of Conformality

Many flavor staggered fermions		28.06.2012	2 / 10
	Many flavor staggered fermions	Many flavor staggered fermions	Many flavor staggered fermions 28.06.2012

Large $N_{\rm f}$ Strong Coupling QCD: A Case Against Mean Field

Mean Field: chiral symmetry is always broken in the strong-coupling limit of staggered fermions at T = 0 for all values of $N_{\rm f}$ and $N_{\rm c}$

- chiral condensate well known to be independent of $N_{\rm f}$ and $N_{\rm c}$, i.e. in *d* spatial dimensions: [Kluberg-Stern *et al.*, 1983] $\langle \bar{\psi}\psi \rangle$ (T = 0) = $\frac{((1+d^2)^{1/2}-1)/2}{d}$
- we also found, following [Damgaard *et al.*, 1985]: chiral restoration temperature is $T_c = \frac{d}{4} + \frac{d}{8} \frac{N_c}{N_f} + \mathcal{O}(\frac{1}{N_c^2})$

• mean field expected to work well for large number of d.o.f. per site, e.g. exact results in the Gross-Neveu model for $N_{\rm f} \to \infty$

Chiral Restoration for large $N_{\rm f}$

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]

 \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$

Many flavor staggered fermions

28.06.2012 4 / 10

The Chirally Restored Phase for large β

- smooth variation with $\beta \rightarrow N_{\rm f}$ -driven transition extends to weak coupling
- $N^c_{
 m f}\simeq {\cal O}(10)$ at weaker coupling
- connection with N_f-driven transition to conformal window?

Characterizing the chirally restored phase: hadron masses

Hadron spectrum obtained from simulations with $N_{\rm f}=56$ and $N_{\rm f}=96$ at zero quark mass

- hadron masses measured for $m_q = 0$ are non-zero
- but masses decrease as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios ~ independent of *L*:

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

- integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$
- derivative gives $\rho(\lambda)$

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare $N_{\rm f} = 0$ (quenched configurations) and $N_{\rm f} = 56$ (chirally symmetric phase)

- similar for large eigenvalues (UV)
- the $N_{\rm f}=56$ curve shows a gap for small eigenvalues (IR), consistent with chiral symmetry restoration: $\rho(0)=0$

Wolfgang Unger, ETH Zürich

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare different volumes for $N_{\rm f} = 56$:

- large eigenvalues (UV) are L-independent,
- the IR spectral gap shrinks as L increases

Wolfgang Unger, ETH Zürich

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare different volumes for $N_{\rm f} = 56$:

- ullet IR spectrum invariant after rescaling by L: spectral gap $\propto 1/L$
- IR physics only depends on L, while the UV physics depends on a
- no other scale in the system \Rightarrow we have an **IR-conformal theory!**

Integrated eigenvalue density, rescaling the infrared, $\rm m_q{=}0, \, \rm N_f{=}56$

Wolfgang Unger, ETH Zürich

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda_{QCD} \ll L$
- ullet at strong-coupling the hierarchy is $a\simeq 1/\Lambda_{\text{QCD}}\ll L$
- range of conformal invariance (LA $_{QCD})$ maximized at $\beta=0$ for given lattice size L/a

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda_{QCD} \ll L$
- ullet at strong-coupling the hierarchy is $a\simeq 1/\Lambda_{\text{QCD}}\ll L$
- range of conformal invariance (LA $_{QCD})$ maximized at $\beta=0$ for given lattice size L/a

Summary

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is $N_{\rm f}$ -driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^c = 52(4)$ continuum flavors
- finding in contrast to meanfield prediction
- chirally restored phase extends to weak coupling

Also shown: for $\beta = 0$, "large- $N_{\rm f}$ QCD" is IR-conformal:

- strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge theory
- $\bullet\,$ simulations at large $N_{\rm f}$ and zero quark mass can be performed without too much computer effort

Wolfgang Unger, ETH Zürich Many flavor staggered fermions 28.06.2012 9 / 10

Summary

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is $N_{\rm f}$ -driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^c = 52(4)$ continuum flavors
- finding in contrast to meanfield prediction
- chirally restored phase extends to weak coupling

Also shown: for $\beta = 0$, "large- N_f QCD" is IR-conformal:

- strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge theory
- $\bullet\,$ simulations at large $N_{\rm f}$ and zero quark mass can be performed without too much computer effort

Discussion

Outlook

- quark mass breaks conformality; chiral condensate is proportional to $m_q \Rightarrow \gamma^* = 1$
- check for IRFP ?
- glueballs, static potential, ...

Single parameter of this IR-conformal theory is $N_{\rm f}$:

- \bullet increasing $\textit{N}_{\rm f}$ increases the magnitude of the spectral gap,
- decreasing $N_{\rm f}$ brings us back to a chirally broken phase, via a first-order transition as in Sannino's "Jumping dynamics" [hep-ph/1205.4246] \rightarrow no walking dynamics

Our findings are consistent with the literature:

- Kogut, Sinclair, Nucl. Phys. B295 (1985) bulk transition for $N_{
 m f}=12$
- Damgaard, et al., Phys. Lett. B400 (1997): bulk transition for $N_{\rm f}=16$
- Jin, Mawhinney, PoS Lattice2011: bulk transition for $N_{\rm f}=12$ with improved action
- A. Hasenfratz, hep-lat/1111.2317 (2012): bulk transition for $N_{\rm f}=8,12$

Backup Slide: Time Histories for Chiral Condensate

Wolfgang Unger, ETH Zürich

Many flavor staggered fermions

28.06.2012 11 / 10

Backup Slide: Time Histories for Chiral Condensate

Backup Slide: Time Histories for Chiral Condensate

Backup Slide: Time Histories for Chiral Condensate

