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Large Nf Strong Coupling QCD: A Case Against Mean Field

Mean Field: chiral symmetry is always broken in the strong-coupling limit of
staggered fermions at T = 0 for all values of Nf and Nc

chiral condensate well known to be independent of Nf and Nc,
i.e. in d spatial dimensions:
[Kluberg-Stern et al., 1983]

〈
ψ̄ψ
〉

(T = 0) =
((1+d2)1/2−1)/2)

1/2

d

we also found, following [Damgaard et al., 1985]:
chiral restoration temperature is Tc = d

4 + d
8

Nc
Nf

+O( 1
N2

f
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mean field expected to work well for large number of d.o.f. per site,
e.g. exact results in the Gross-Neveu model for Nf →∞
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Chiral Restoration for large Nf

On the other hand: loop expansion of the determinant shows that dynami-
cal fermions induce a plaquette coupling ∝ Nf/m4

q, as studied numerically by
[A. Hasenfratz, T. DeGrand PRD49 (1994)]
⇒ suggests chiral symmetry restoration for sufficiently large Nf ?
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Chiral Restoration for large Nf

On the other hand: loop expansion of the determinant shows that dynami-
cal fermions induce a plaquette coupling ∝ Nf/m4

q, as studied numerically by
[A. Hasenfratz, T. DeGrand PRD49 (1994)]
⇒ suggests chiral symmetry restoration for sufficiently large Nf ?

Answer from Monte Carlo: Surprise! strong first order Nf-driven bulk transition
for strong-coupling limit of staggered fermions found
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f increases with mq
(heavy fermions → less ordering)
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Nc
f ' 52 continuum flavors for mq = 0, Nc

f increases with mq
(heavy fermions → less ordering), almost no finite size effects
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Chiral Restoration for large Nf

On the other hand: loop expansion of the determinant shows that dynami-
cal fermions induce a plaquette coupling ∝ Nf/m4

q, as studied numerically by
[A. Hasenfratz, T. DeGrand PRD49 (1994)]
⇒ suggests chiral symmetry restoration for sufficiently large Nf ?

Answer from Monte Carlo: Surprise! strong first order Nf-driven bulk transition
for strong-coupling limit of staggered fermions found
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Chiral Restoration for large Nf

On the other hand: loop expansion of the determinant shows that dynami-
cal fermions induce a plaquette coupling ∝ Nf/m4

q, as studied numerically by
[A. Hasenfratz, T. DeGrand PRD49 (1994)]
⇒ suggests chiral symmetry restoration for sufficiently large Nf ?

Answer from Monte Carlo: Surprise! strong first order Nf-driven bulk transition
for strong-coupling limit of staggered fermions found
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f smaller, stronger finite size effects
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Chiral Restoration for large Nf

On the other hand: loop expansion of the determinant shows that dynami-
cal fermions induce a plaquette coupling ∝ Nf/m4

q, as studied numerically by
[A. Hasenfratz, T. DeGrand PRD49 (1994)]
⇒ suggests chiral symmetry restoration for sufficiently large Nf ?

Answer from Monte Carlo: Surprise! strong first order Nf-driven bulk transition
for strong-coupling limit of staggered fermions found
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Chiral Restoration for large Nf

The Chirally Restored Phase for large βThe Chirally Restored Phase for large βThe Chirally Restored Phase for large βThe Chirally Restored Phase for large βThe Chirally Restored Phase for large β

smooth variation with β → Nf-driven transition extends to weak coupling
Nc

f ' O(10) at weaker coupling
connection with Nf-driven transition to conformal window?
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Tests of Conformality

Characterizing the chirally restored phase: hadron massesCharacterizing the chirally restored phase: hadron massesCharacterizing the chirally restored phase: hadron massesCharacterizing the chirally restored phase: hadron massesCharacterizing the chirally restored phase: hadron masses

Hadron spectrum obtained from simulations with Nf = 56 and Nf = 96
at zero quark mass

hadron masses measured for mq = 0 are non-zero
but masses decrease as the lattice size L is increased
parity partners degenerate (c.f. chiral symmetry restoration)
mass ratios ∼ independent of L:
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Tests of Conformality

Characterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac Spectrum

Dirac eigenvalue spectrum, measured at zero quark mass, β = 0:

integrated eigenvalue density:
∫ λ
0 ρ(λ̄)d λ̄ = rank(λ)

rank(Dirac matrix) ∈ [0, 1]

derivative gives ρ(λ)
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Tests of Conformality

Characterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac Spectrum

Dirac eigenvalue spectrum, measured at zero quark mass, β = 0:

integrated eigenvalue density:
∫ λ
0 ρ(λ̄)d λ̄ = rank(λ)

rank(Dirac matrix) ∈ [0, 1]

Compare Nf = 0 (quenched configurations) and Nf = 56 (chirally symmetric phase)
similar for large eigenvalues (UV)
the Nf = 56 curve shows a gap for small eigenvalues (IR), consistent with chiral symmetry
restoration: ρ(0) = 0
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Tests of Conformality

Characterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac Spectrum

Dirac eigenvalue spectrum, measured at zero quark mass, β = 0:

integrated eigenvalue density:
∫ λ
0 ρ(λ̄)d λ̄ = rank(λ)

rank(Dirac matrix) ∈ [0, 1]

Compare different volumes for Nf = 56:
large eigenvalues (UV) are L-independent,
the IR spectral gap shrinks as L increases
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Tests of Conformality

Characterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac SpectrumCharacterizing the chirally restored phase: Dirac Spectrum

Dirac eigenvalue spectrum, measured at zero quark mass, β = 0:

integrated eigenvalue density:
∫ λ
0 ρ(λ̄)d λ̄ = rank(λ)

rank(Dirac matrix) ∈ [0, 1]

Compare different volumes for Nf = 56:
IR spectrum invariant after rescaling by L: spectral gap ∝ 1/L
IR physics only depends on L, while the UV physics depends on a
no other scale in the system ⇒ we have an IR-conformal theory!
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Tests of Conformality

Conjecture: β = 0 IR-conformal phase is analytically connected with the weak-
coupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:
for a given lattice size L4, the scales are ordered as a� 1/ΛQCD � L
at strong-coupling the hierarchy is a ' 1/ΛQCD � L
range of conformal invariance (LΛQCD) maximized at β = 0 for given lattice size
L/a

weak coupling: strong coupling:

a 1/ΛQCD L=aN a≈1 /ΛQCD L=aN

strong-coupling limit is the laboratory of choice to study a
4d IR-conformal gauge theory
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Discussion

SummarySummarySummarySummarySummary

Shown: for β = 0, a strong first order bulk transition exists which is Nf-driven to a
chirally symmetric phase

in the chiral limit: Nc
f = 52(4) continuum flavors

finding in contrast to meanfield prediction
chirally restored phase extends to weak coupling

Also shown: for β = 0, “large-Nf QCD” is IR-conformal:
strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge
theory
simulations at large Nf and zero quark mass can be performed without too much
computer effort
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Discussion

SummarySummarySummarySummarySummary

Shown: for β = 0, a strong first order bulk transition exists which is Nf-driven to a
chirally symmetric phase

in the chiral limit: Nc
f = 52(4) continuum flavors

finding in contrast to meanfield prediction
chirally restored phase extends to weak coupling

Also shown: for β = 0, “large-Nf QCD” is IR-conformal:
strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge
theory
simulations at large Nf and zero quark mass can be performed without too much
computer effort

no evidence for additional T = 0 phase transition as β is increased
⇓

Conjecture: strong coupling chirally symmetric, IR-conformal phase is
analytically connected with the continuum IR-conformal phase
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Discussion

DiscussionDiscussionDiscussionDiscussionDiscussion

Outlook
quark mass breaks conformality; chiral condensate
is proportional to mq ⇒ γ∗ = 1
check for IRFP ?
glueballs, static potential, . . .
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Single parameter of this IR-conformal theory is Nf :
increasing Nf increases the magnitude of the spectral gap,
decreasing Nf brings us back to a chirally broken phase, via a first-order transition
as in Sannino’s "Jumping dynamics" [hep-ph/1205.4246] → no walking dynamics

Our findings are consistent with the literature:
Kogut, Sinclair, Nucl. Phys. B295 (1985) bulk transition for Nf = 12
Damgaard, et al., Phys. Lett. B400 (1997): bulk transition for Nf = 16
Jin, Mawhinney, PoS Lattice2011: bulk transition for Nf = 12 with improved action
A. Hasenfratz, hep-lat/1111.2317 (2012): bulk transition for Nf = 8, 12
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Discussion
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