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Introduction

- Study on Baryogenesis, a mechanism for producing more

matter than antimatter;

- Mechanism unknown, but suggested it might take place at the

electroweak phase transition;

- The EWPT needs to be first order; [Kuzmin, Rubakov,

Shaposhnikov, 1985]

- The order of the transition and the temperature it occurs

depend on the value of Higgs mass;

- Baryon number is violated in the SM [’t Hooft, 1976] through

sphaleron transitions.



Motivation

Latest results (ATLAS/CMS) suggest Higgs (if it exists) might

have a mass of mH ∼ 126 GeV. This would make the EWPT a

crossover [Kajantie, Laine, Rummukainen, Shaposhnikov, 1996]. However,

the sphaleron rate is independent of the transition order, being

defined in terms of the topology of the EW theory, and

Baryogenesis might still be viable through Leptogenesis, as B − L

is conserved. The sphaleron rate enters L number production as a

parameter converting L to B.

Our work: We found out the sphaleron rate as a function of

temperature across the electroweak crossover.



Vacuum structure of the electroweak theory

* In EW theory vacua are disconnected and degenerate

−2 −1 0 1 2 3

Ε

NCS

Εsph

* Each vacuum is labeled by a different Chern-Simons number NCS
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* When gauge fields pass from one vacuum to another, NCS

changes by 1 unit and B by 3 (through the EW anomaly)

∂µj
µ
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µ
CS ,

where ng is the number of generations of fermions.



Moving between vacua: sphaleron transitions

* At zero temperature:

- the process is classically forbidden;

- quantum tunneling (instanton) is highly suppressed

∼ exp(−16π2/g2) ∼ 10−170

* At higher temperatures (T >∼100 GeV):

- transitions are possible by surmounting the potential

barrier through sphaleron transitions (lower barrier,

large thermal energy)

The sphaleron rate is

Γ ≡ lim
t→∞

〈(NCS(t)− NCS(0))
2〉

V t



Methods

We studied the baryon number violation rate:

* on a 3D-lattice, with L = 32;

* dimensional reduction → 3D effective theory;

* with fields: SU(2) + Higgs;

* two different methods, depending on the T we are

examining:

- Canonical Monte Carlo (heat bath)

- Multicanonical MC + Real-time



Dimensional reduction:

4Dcontinuum → 3Dcontinuum

The thermodynamics of the 4D electroweak theory is studied in 3D

by mean of dimensional reduction, which gives the correspondence

between 4D and 3D parameters. [Ginsparg, 1980; Appelquist, Pisarski,

1981]

The SU(2)-Higgs effective theory is

L =
1

4
F a
ijF

a
ij + (Diφ)

†(Diφ) +m2
3φ

†φ+ λ3(φ
†φ)2,

where g2
3 , λ3 and m2

3 are 3D effective parameters. [Kajantie, Laine,

Rummukainen, Shaposhnikov, 1995]



Lattice - continuum relations:

3Dcontinuum ↔ 3Dlattice

o The obtained 3D theory must be put on the lattice;

o In order to preserve the match between lattice and

continuum actions, corrections must be applied to

the parameters g3, λ3, m3; [Symanzik, 1983]

o All corrections (except for m3) have been calculated

to O(a). [Moore, 1997]



Dynamics

The time evolution of this effective SU(2) theory follows Langevin

dynamics, at leading order in log(1/g) [Bödeker, 1998]

However, since Langevin dynamics is slow on lattice, it can be

substituted by any other dissipative method as long as we know

the correspondence

lattice-time step ↔ real-time step



Heat bath evolution

In our case we use heat-bath update, with [Moore, Rummukainen, 2001]

∆t =
nt σel a

2

4

where:

nt = updates / measurement

σel =
m2

D

3γ
non-abelian color conductivity

mD =

√
11

6
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γ =
Ng2T

4π

[
ln

(
mD

γ

)
+ 3.041

]
≈ 0.66361688 g2T

= damping rate for the gauge boson



Method: canonical vs multicanonical

I We choose a Higgs mass;

I We start at high T in the symmetric phase and use canonical

MC/heat bath simulations to find the sphaleron rate;

I We lower the T towards the broken phase and notice the

number of transitions decreases;

I In the deep broken phase the rate is highly suppressed and

canonical methods don’t work anymore;

→ we need multicanonical methods to compensate for the

high potential barrier.



Canonical MC in the symmetric phase

* The evolution follows a random walk in nCS (canonical Monte

Carlo) for, at high T:

- Larger availability of thermal energy

- Potential barriers become lower
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Figure: Left: nCS evolution; Right: Probability distribution.



Canonical MC at the crossover
* The Hamiltonian evolution of a state wanders around one vacuum for

an amount of time;

* After crossing to another vacuum, it doesn’t promptly continue to the

next vacuum: EITHER it settles around the new vacuum OR returns to

the initial one;
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Figure: Left: nCS evolution over time; Right: Probability distribution.



Canonical MC in the deep broken phase

* The configuration remains in the same vacuum, if we use

canonical MC, because transitions are highly suppressed;
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Figure: Left: nCS evolution over time; Right: Probability distribution.



Multicanonical method in the broken phase

We use a weight function to compensate the potential barrier and

obtain a flat probability distribution. [Moore, 1998; Moore,

Rummukainen, 2000]

1. Set an order parameter to distinguish vacua:

n∗CS = 1/2, i. e. on top of the barrier;

2. Find the weight function W and calculate the Pε to

be in the small interval n∗CS ± ε/2: -multicanonical

run

3. Calculate the probability flux: need to know the

mean inverse time for crossing ε: -real-time run

1

ε

〈dNCS

dt

〉



Multicanonical method in the broken phase
4. Calculate the dynamical prefactor

d =
∑

sample

δ

nr crossings

which is the fraction of n∗CS crossings that lead to a permanent change in

NCS . δ is either 0 or 1. -real-time simulation
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Figure: nCS real-time trajectories.



The sphaleron rate

The sphaleron rate we obtain from the combined multicanonical

and real-time simulations is [Moore, 1998]

Γs ≡ P(|NCS − N∗
CS | < ε/2)× 1

ε

〈dNCS

dt

〉× d

and is converted into physical units by:

Γ =
Γs

∆t a3 N3
s

.

with a = lattice spacing, Ns = lattice sites.



Multicanonical MC in the deep broken phase

We need to use multicanonical methods to observe transitions. We

sample with constant probability: Pmuca ∝ exp[W ] Pcan
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Left: Pmuca; Centre: nCS evolution; Right: Pcan



The sphaleron rate for mH = 126 GeV
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Asymptotic limit: ∼ 5 × 10−7 T4. [Burnier, Laine, Shaposhnikov, 2006]



Conclusions

* We got the complete picture of the sphaleron rate through the

electroweak crossover, improving previous estimates.

* Our results are in agreement with previous results, in the range

where they exist.

* The two simulation methods are consistent with each other.

* The crossover temperature depends on the Higgs mass.

* Even if CP-violation is too small in SM, Baryogenesis might be

viable through Leptogenesis, where the sphaleron rate enters as a

parameter.


