$\sim d$	uct	
ou		

Higgs boson mass bounds in presence of a heavy fourth quark family

Attila Nagy^{1,2} in collaboration with: John Bulava³, Philipp Gerhold¹, Karl Jansen² and Jim Kallarackal¹

¹Humboldt University Berlin; ²NIC, DESY Zeuthen; ³Theory Division, CERN

June 28th, 2012

Attila Nagy

Outline		

Introduction

Implementation and Observables

Higgs Boson Mass Bounds

Comparison to Perturbation Theory

Summary

Higgs Boson Mass

- Higgs boson experimentally not found yet, but it is the simlest way to explain EW symmetry breaking
- No direct theoretical prediction for the Higgs boson mass available Only perturbative arguments for mass bounds
 - upper bound is given by the Landau Pole
 - Iower bound is given by the requirement of a stable vacuum

Higgs Boson Mass

- Higgs boson experimentally not found yet, but it is the simlest way to explain EW symmetry breaking
- No direct theoretical prediction for the Higgs boson mass available Only perturbative arguments for mass bounds
 - upper bound is given by the Landau Pole
 - Iower bound is given by the requirement of a stable vacuum
- A fourth generation of quarks is not excluded, but could provide a larger amount of CP violation which could have impact on the Baryogenesis of the universe
- We investigate non-perturbatively the Higgs boson mass bounds depending on the mass of a hypothetical fourth quark generation

Higgs-Yukawa model in the continuum

We consider: Fermion doublet $\psi = (t, b)^T$ and a complex scalar doublet φ :

$$\begin{split} S^{\text{cont}}[\bar{\psi},\psi,\varphi] &= \int d^4x \left\{ \frac{1}{2} \left(\partial_{\mu}\varphi \right)^{\dagger} \left(\partial^{\mu}\varphi \right) + \frac{1}{2} m_0^2 \varphi^{\dagger}\varphi + \lambda_0 \left(\varphi^{\dagger}\varphi\right)^2 \right\} \\ &+ \int d^4x \left\{ \bar{t} \bar{\vartheta} t + \bar{b} \bar{\vartheta} b + y_{b_0} \bar{\psi}_L \varphi \, b_R + y_{t_0} \bar{\psi}_L \tilde{\varphi} \, t_R + h.c. \right\} \end{split}$$

- No gauge fields (color or electroweak)
- Only the heaviest quarks are considered

	Implementation		
Lattice a	action		

Real four-vector Φ and N_f quark doublets ψ Bosonic action:

$$S_B[\Phi] = -\kappa \sum_{x,\mu} \Phi_x^{\dagger} \left[\Phi_{x+\mu} + \Phi_{x-\mu} \right] + \sum_x \Phi_x^{\dagger} \Phi_x + \hat{\lambda} \sum_x \left[\Phi_x^{\dagger} \Phi_x - N_f \right]^2$$

The connection to continuum is given by:

$$\varphi = \sqrt{2\kappa} \left(\begin{array}{c} \Phi^2 + i\Phi^1 \\ \Phi^0 - i\Phi^3 \end{array} \right), \quad \lambda = \frac{\hat{\lambda}}{4\kappa^2}, \quad m^2 = \frac{1 - 2N_f \hat{\lambda} - 8\kappa}{\kappa}$$

Attila Nagy

Lattice action

Fermionic action:

$$S_F[\bar{\psi},\psi,\Phi] = \sum_x \bar{\psi}_x \left[D^{ov} + P_+ \phi_x^\dagger \mathsf{diag}(\hat{y}_t,\hat{y}_b)\hat{P}_+ + P_-\mathsf{diag}(\hat{y}_t,\hat{y}_b)\phi_x\hat{P}_- \right] \psi_x$$

with $y_{t/b} = \frac{\hat{y}_{t/b}}{\sqrt{2\kappa}}$ We use the overlap operator: $D^{ov} = \frac{\rho}{a} \left[1 + \frac{A}{\sqrt{AA^{\dagger}}} \right], \qquad A = D^{\text{Wilson}} - \frac{\rho}{a}$ [Kaplan 1992; Neuberger, Lüscher, Hasenfratz 1998]

 $\blacktriangleright \ D^{ov}$ has analytical eigenvalues and eigenvectors in momentum space due to the absence of gauge fields

In this work we use only one mass degenerjate quark doublet ($N_f=1$ and $\hat{y}_b=\hat{y}_t)$

Implementation

	polynomial	Hybrid	Monte	Carlo	${\sf algorithm}$
--	------------	--------	-------	-------	-------------------

[Frezzotti & Jansen 1997-1999]

[Gerhold 2010]

- various algorithmic improvements
 - Fourier acceleration
 - Exact reweighting
 - Preconditioning of the fermion matrix
- ▶ Scale is set over renormalized vacuum expectation value of the scalar field: $\frac{v_r}{a} = 246 \text{ GeV}$
- \blacktriangleright Definition of the cutoff: $\Lambda = \frac{1}{a} = \frac{246 \text{ GeV}}{v_r}$

$$\bullet \ v_r = \frac{v}{\sqrt{Z_G}}, \quad \bar{\varphi}^{rot} = \begin{pmatrix} 0\\ \bar{v} \end{pmatrix} = \begin{pmatrix} 0\\ \sqrt{2\kappa\bar{m}} \end{pmatrix}$$

Implementation

Higgs boson mass bounds

Observables

$$\blacktriangleright v_r = \frac{v}{\sqrt{Z_G}}, \quad \bar{\varphi}^{rot} = \begin{pmatrix} 0\\ \bar{v} \end{pmatrix} = \begin{pmatrix} 0\\ \sqrt{2\kappa\bar{m}} \end{pmatrix}$$

Field renormalization constants:

$$Z_{_{G/H}}^{-1} = \frac{d}{d(p^2)} \Re \left(\left[G_{_{G/H}}(p^2) \right]^{-1} \right) \Big|_{p^2 = -m_{_{G/H}}^2}$$

Implementation

Observables

$$\blacktriangleright v_r = \frac{v}{\sqrt{Z_G}}, \quad \bar{\varphi}^{rot} = \begin{pmatrix} 0\\ \bar{v} \end{pmatrix} = \begin{pmatrix} 0\\ \sqrt{2\kappa\bar{m}} \end{pmatrix}$$

Field renormalization constants:

$$Z_{_{G/H}}^{-1} = \frac{d}{d(p^2)} \Re \left(\left[G_{_{G/H}}(p^2) \right]^{-1} \right) \Big|_{p^2 = -m_{_{G/H}}^2}$$

▶ The fermion masses are computed via the time slice correlator:

$$C_f(\Delta t) = \frac{1}{L_t L_s^6} \sum_{t=0}^{L_t - 1} \sum_{\vec{x} \cdot \vec{y}} \left\langle 2 \Re \text{Tr} \left\{ f_{\scriptscriptstyle L, t + \Delta t, \vec{x}} \bar{f}_{\scriptscriptstyle R, t, \vec{y}} \right\} \right\rangle$$
$$C_f(1 \ll \Delta t \le L_t/2) \propto \cosh\left(m_f \left[L_t/2 - \Delta_t \right] \right)$$

Attila Nagy

► Higgs-/Goldstone boson masses from propagators:

$$0 = \Re \left(\left[G_{_{G/H}}(p^2) \right]^{-1} \right) \Big|_{p^2 = -m_{_{G/H}}^2}$$

► Higgs-/Goldstone boson masses from propagators:

$$0 = \Re \left(\left[G_{_{G/H}}(p^2) \right]^{-1} \right) \Big|_{p^2 = -m_{_{G/H}}^2}$$

 The propagators are fitted according a one-loop motivated LPT-expression and an analytical continuation is performed to extract the pole

Higgs-/Goldstone boson masses from propagators:

$$0 = \Re \left(\left. \left[G_{_{G/H}}(p^2) \right]^{-1} \right) \right|_{p^2 = -m_{G/H}^2}$$

- The propagators are fitted according a one-loop motivated LPT-expression and an analytical continuation is performed to extract the pole
- This procedure is only reliable, if the decay width is small compared to the mass

Cross check of the Higgs boson propagator mass

- Perform a rigorous resonance analysis for the Higgs boson at physical top quark mass
- Connection between infinite volume scattering phases and finite volume two particle energies
- ► Two particle energies computed in rest frame and moving frame

[Rummukainen & Gottlieb, 1995]

Cross check of the Higgs boson propagator mass

- Perform a rigorous resonance analysis for the Higgs boson at physical top quark mass
- Connection between infinite volume scattering phases and finite volume two particle energies
- ► Two particle energies computed in rest frame and moving frame

[Rummukainen & Gottlieb, 1995]

• Example result:

Attila Nagy

Results of cross check ($m_t \approx 175 GeV$)

[Gerhold, Jansen, Kallarackal 2011]

$\hat{\lambda}$	Cutoff Λ	aM_H^R	$a\Gamma^R_H$	aM_H^P
0.01	883(1) GeV	0.2811(6)	0.007(1)	0.278(2)
1.0	1503(5) GeV	0.374(4)	0.033(4)	0.386(28)
∞	1598(2) GeV	0.411(3)	0.040(4)	0.405(4)

- very good agreement of the masses
- decay width smaller than 10% of the mass

Attila Nagy

Determination of mass bounds

Basic procedure:

- Set the couplings to the desired values to obtain the desired quark masses and cutoff
- \blacktriangleright lower bound: $\hat{\lambda}=0,$ upper bound: $\hat{\lambda}=\infty$
- ► (Almost) massless Goldstone bosons induce $\mathcal{O}(L_s^{-2})$ finite volume effects (P. Hasenfratz et al. 1991, A. Hasenfratz et al. 1991)

Determination of mass bounds

Basic procedure:

- Set the couplings to the desired values to obtain the desired quark masses and cutoff
- \blacktriangleright lower bound: $\hat{\lambda}=0,$ upper bound: $\hat{\lambda}=\infty$
- ▶ (Almost) massless Goldstone bosons induce $\mathcal{O}(L_s^{-2})$ finite volume effects (P. Hasenfratz et al. 1991, A. Hasenfratz et al. 1991)

[Gerhold 2010; Kallarackal 2011]

Cutoff Dependence

- ► Blue band for the upper bound shows a fit according to: $m_H^{up} = A \cdot \left\{ \log \left(\Lambda^2 / \mu^2 \right) + B \right\}^{-1/2}$
- Blue curve for the lower bound corresponds to a leading oder LPT prediction
- Significant change in the lower Higgs boson mass bound when increasing the quark mass

Attila Nagy

Dependence on the quark mass at $\Lambda = 1500 \text{ GeV}$

Consequences for the fourth generation...

Attila Nagy

Perturbative estimate

- Compare our results for the lower Higgs boson mass bound to lattice perturbation theory
- ▶ Influence of a $\lambda_6 \phi^6$ term?
- Leading order effective potential description: [Fodor et al. 2007; Gerhold 2010]

$$U(\bar{\phi}) = \frac{1}{2}m_0^2\bar{\phi}^2 + \lambda\bar{\phi}^4 + \lambda_6\bar{\phi}^6 + U_F(\bar{\phi}) + 6\lambda\bar{\phi}^2(P_H + P_G) + \lambda_6\bar{\phi}^4(15P_H + 9P_G) + \lambda_6\bar{\phi}^2(45P_H^2 + 54P_HP_G + 45P_G^2)$$

Perturbative estimate

- Compare our results for the lower Higgs boson mass bound to lattice perturbation theory
- Influence of a $\lambda_6 \phi^6$ term?
- ► Leading order effective potential description: [Fodor et al. 2007; Gerhold 2010]

$$U(\bar{\phi}) = \frac{1}{2}m_0^2\bar{\phi}^2 + \lambda\bar{\phi}^4 + \lambda_6\bar{\phi}^6 + U_F(\bar{\phi}) + 6\lambda\bar{\phi}^2(P_H + P_G) + \lambda_6\bar{\phi}^4(15P_H + 9P_G) + \lambda_6\bar{\phi}^2(45P_H^2 + 54P_HP_G + 45P_G^2)$$

vev and Higgs boson mass are given by:

$$U'(v) = 0, \quad U''(v) = M_H$$

• Constraints: Only one local minimum of U in the scaling region $(|\bar{\phi}| < 0.5)$: $U''(\bar{\phi}) > 0$, $\bar{\phi} > v$

Comparison of the lower mass bound in the effective potential and the simulations

Qualitative agreement of the simulations with PT up to very large couplings

Lower mass bound with and without the ϕ^6 term (only effective potential!)

No measurable effect on the lower bound due to the ϕ^6 term

		Summary
Summary		
Summary		

- We provide Higgs boson mass bounds for a wide range of quark masses
- ▶ We give arguments for the stability of those bounds

	Higgs boson mass bounds	Perturbative Results

Summary

- We provide Higgs boson mass bounds for a wide range of quark masses
- We give arguments for the stability of those bounds
- However, we will perform non-perturbative analysis of:
 - An additional ϕ^6 term
 - The influence of a mass splitting between the quarks

Summarv

	Higgs boson mass bounds

Summary

- We provide Higgs boson mass bounds for a wide range of quark masses
- We give arguments for the stability of those bounds
- However, we will perform non-perturbative analysis of:
 - An additional ϕ^6 term
 - The influence of a mass splitting between the quarks
 - Effect of an additional scalar singlet

[Espinosa et al. 2012]