# Strange quark content of the nucleon and dark matter searches

Ross Young Joel Giedt, Phiala Shanahan, Anthony Thomas, Sophie Underwood









Matter we pretend to understand

Other

Dark Matter

Dark Energy

Matter we pretend to understand

Other

Dark Matter

Dark Energy

Matter we pretend to understand

Matter we hope to understand soon

Other

Dark Matter

Dark Energy

Matter we pretend to understand

- Matter we hope to understand soon
- Strong evidence that this is made up of weakly-interacting massive particles: "WIMPs"

Other

Dark Matter

Dark Energy

Matter we pretend to understand

- Matter we hope to understand soon
- Strong evidence that this is made up of weakly-interacting massive particles: "WIMPs"
- eg. possible candidate: supersymmetry is not maximally broken in nature

Other

Dark Matter

Dark Energy

# **Direct detection of dark matter**

 $\sim \overline{\chi} \chi \overline{N} N$ 

- Build a big underground detector and wait... patiently
- Of course, cross sections are small
  - but, how small?
- In practice, experiments utilise the nuclear coherence in the elastic scattering from large nuclei
- Scattering amplitude boils down to adding amplitudes from individual nucleons via contact interaction

N

• Spin-independent amplitude

 $\chi$ 

N



Particle Hunt Nets Almost Nothing; the Hunters Are Almost Thrilled



scattering amplitude

 $\mathcal{M} \sim \sum C_q \langle N | m_q \overline{q} q | N \rangle$ 

interaction governed by nucleon "sigma terms"

# **XENON100 cross section limits**

#### XENON100, PRL(2011)



Expected cross sections for neutralino in CMSSM Significant uncertainty from nucleon sigma terms

# Sigma terms drive uncertainty

- Eg. CMSSM: Ellis, Olive & Savage, PRD2008
  - Benchmark models show variation over an order of magnitude with respect to variation of



 Uncertainty is largely driven by the poorly constrained extraction of the strangeness sigma term

### Early extraction of strangeness sigma term

- Strangeness sigma term  $\sigma_s \equiv m_s \langle N | \bar{s}s | N \rangle$
- Observed baryon mass spectrum can estimate non-singlet quantity  $\sigma_0\equiv \hat{m}\langle N|\bar{u}u+\bar{d}d-2\bar{s}s|N
  angle$ 
  - First-order SU(3) breaking:

$$\sigma_0 \simeq \hat{m} \frac{m_{\Xi} + m_{\Sigma} - 2m_N}{m_s - \hat{m}} = 26 \,\mathrm{MeV}$$

• Improved EFT estimate:

Borasoy & Meißner (1997)  $\sigma_0 \simeq 36 \pm 7 \,\mathrm{MeV}$ 

• Strangeness then related to  $\Sigma_{\pi N}$ :

$$\sigma_s = \frac{m_s}{2\hat{m}} \left( \Sigma_{\pi N} - \sigma_0 \right)$$

• Of course,  $\Sigma_{\pi N}$  has seen it's own challenges over the years:

 $\Sigma_{\pi N} = \begin{cases} 45 \pm 8 \,\text{MeV} & \text{Gasser et al. (1991)} \\ 64 \pm 7 \,\text{MeV} & \text{GWU (2002)} \\ 59 \pm 7 \,\text{MeV} & \text{Alarcon et al. (2012)} \end{cases}$ 









Light-quark Sigma Term

Even if 
$$\Sigma_{\pi N}$$
 perfect  $\Rightarrow \Delta \sigma_s = \frac{m_s}{2\hat{m}} \Delta \sigma_0 \sim 90 \,\mathrm{MeV}$ 

# **Resolution: Lattice QCD**

# **Two common lattice QCD techniques**

• Direct:

3-point matrix element



Connected



Disconnected

- Ratio with 2-point correlator (at large  $\Delta t$ ) isolates relevant matrix element
  - Disconnected diagrams notoriously difficult
  - Scalar current couples to vacuum ⇒ requires vacuum subtraction

# **Two common lattice QCD techniques**

• Spectrum / Feynman-Hellmann:

Differentiate quark-mass dependence

$$\sigma_q = \langle N | m_q \bar{q} q | N \rangle = m_q \frac{\partial M_N}{\partial m_q}$$

- Isolation of quark-mass dependence of baryon masses can resolve sigma terms
  - Require substantial variation of both light and strange quark masses
  - Challenge to parameterize a robust description of lattice results appropriate for extrapolation to physical point

# Light-quark sigma term in lattice QCD



 $\Sigma_{\pi N}$ 

# Strange-quark sigma term in lattice QCD



# Strange-quark sigma term in lattice QCD



# Lattice QCD selected highlights

Apologies to those I don't have time to cover

And thanks to all who wrote to me

### **Renewed interest thanks to JLQCD**



#### Pion mass (squared)





1.8

1.6

1.4

1.2

0.8

0

 $M_N$  [GeV]

Feynman-Hellmann

0.2

0.3

 $m_{\pi}^{2}$  [GeV<sup>2</sup>]

0.4

0.1

Ratio: disconnected/connected
 ⇒ estimate *y*-parameter

 $y = \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle} \simeq 0.030 \pm 0.018$ 

Unitary line

0.6

0.7

0.5

#### PRD(2008)

# **Toussaint & Freeman (MILC)**

- Asqtad & HISQ
- "Hybrid method": Application of the Feynman-Hellmann relation as applied directly to the nucleon correlator
- Stochastic reweighting of the nucleon mass



Latest result  $\sigma_s = 57^{+5}_{-7} \,\mathrm{MeV}$ 





Light quark mass





# **Further developments**

- Direct calculations:
  - QCDSF [1111.1600, PRD(2012)] Careful analysis of operator mixing for Wilson fermions
  - Engelhardt [1011.6058, prelim] Mixed action results soon!
  - ETMC [V. Drach, Monday; 1202.1480] Investigating excited-state contamination
  - Boston U. [M. Cheng, Monday] In progress
  - χQCD [M. Gong, Monday, prelim] Overlap on DWF, low-mode averaging
- Spectrum / Feynman–Hellman:
  - BMW [1109.4265, PRD(2012)] Extensive quark-mass coverage, light pions
  - QCDSF/UKQCD [1110.4971, PRD(2012)] Flavour expansion, novel quark-mass trajectory
  - RBC/UKQCD [C. Jung, Monday, prelim] Strange-mass reweighting

# Impact on dark matter searches

# Implications for dark matter cross sections

 Suppose a (constrained) scenario where supersymmetry is not maximally broken by nature ⇒ Neutralino dark matter candidate



CMSSM: Ellis, Olive & Savage

WIMP-Nucleon Cross Section

Giedt, Thomas & Young, PRL(2009)  $\mathbf{p}\mathbf{b}$ 

Lattice QCD inputs dramatically improve cross section estimates

### **Discrimination among candidate models**

• Distinct cross sections for a variety of CMSSM (pre-LHC) "benchmark" models



Giedt, Thomas & Young, PRL(2009)

# **Dark matter candidates in cNMSSM**



Universal gaugino mass

# **Comparison with early work**

# Sigma term estimates



Conservative eye-ball best estimates

# **Comparison with early work**



### Summary

- Prospect of a near-term discovery of a quarter of the universe's energy budget
- Direct detection sensitivity largely dependent upon nucleon sigma terms
- Phenomenological extraction of sigma terms is outdated
  - Lattice QCD is the superior tool
  - [we look forward to ironing out discrepancies in the near future]
- Strangeness is much smaller than early estimates
- Current results are already able to offer significant discrimination power among candidate dark matter models

# Modern lattice QCD: 2+1-flavour dynamical

 Can now independently study the dependence on the light- and strange-quark masses
 3-flavour chiral expansion: Young & Thomas PRD(2010)

Fit to just the blue points



PACS-CS have an additional run with a different strange quark mass

# **Strange-quark mass dependence**

Extrapolate points to physical light-quark masses



Strangeness sigma term is just local derivative at this point

# Improving sigma terms

#### Shanahan et al. arXiv:1205.5365

#### • Fit full PACS-CS data set



# Improving sigma terms

 Important new test: Extrapolate a LONG way in the strange quark mass NEW lattice results: QCDSF/UKQCD, Bietenholz et al. PRD(2011)



Light quark mass

New strange sigma term determination:

 $\sigma_s = 21 \pm 6 \,\mathrm{MeV}$ 

# Improving sigma terms

 Important new test: Extrapolate a LONG way in the strange quark mass NEW lattice results: QCDSF/UKQCD, Bietenholz et al. PRD(2011)



Light quark mass

New strange sigma term determination:

$$\sigma_s = 21 \pm 6 \,\mathrm{MeV}$$

# Engelhardt

- Hybrid action: DWF on Staggered (2+1): 20<sup>3</sup>x64, a=0.124 fm
- Direct 3-point function



#### Strangeness scalar content

#### Strangeness spin content



# **RBC/UKQCD**

#### C. Jung, Monday

- 2+1 DWF+Iwasaki:
  - 32<sup>3</sup>x64x16, a=0.087 fm
  - 24<sup>3</sup>x64x16, a=0.114 fm
- Feynman-Hellman + reweighting

 $<N|ss|N> = d M_N/d m_s (Msbar, 2Gev)$ 





#### M. Gong, Monday; see 1204.0685

- Hybrid: Overlap on 2+1 DWF
  - 24<sup>3</sup>x64x16, a=0.114 fm
- Direct: 3-pt function
  - "Low-mode substitution technique"







#### V. Drach, Monday

**Direct computation of the**  $\sigma$ -terms Excited states contamination :  $\sigma$ -terms Excited states contamination :  $y_N$  parameter





#### V. Drach, Monday

Direct computation of the  $\sigma$ -terms Excited states contamination :  $\sigma$ -terms Excited states contamination :  $y_N$  parameter

### Systematic effects : Excited states contamination

- Dedicated study of excited states contamination of the sigma terms :
  - $\rightarrow$  large statistic : compare  $t_s \sim 0.95$  fm and  $t_s \sim 1.4$  fm
  - $\rightarrow\,$  disconnected contribution increase by a factor  $\sim 2$  both in the light and strange sector
  - $\rightarrow$  Illustration in the strange sector





#### V. Drach, Monday

Direct computation of the  $\sigma$ -terms Excited states contamination :  $\sigma$ -terms Excited states contamination :  $y_N$  parameter

# Systematic effects : Excited states contamination

- Fixed pion mass and fixed lattice spacing computation of the  $y_N$  parameter :
  - $\rightarrow$  Cancelation of the contribution of excited states
  - $\rightarrow$  grey band indicates the result obtained for  $t_s \sim 0.95$  fm
  - $\rightarrow y_N \sim 0.10(2)$  in agreement with other lattice group
  - → Important input for phenomenology but still requires further study e.g at lighter pion masses

