Huey-Wen Lin University of Washington

adro

na

WASHINGTON

Lattice

Huey-Wen Lin — The XXX International Symposium on Lattice Field Theory

ructure:

na

Selected Topics

Apologies in advance to those I cannot fit in today...

Outline

§ The Old: Hadron Structure

✤ Selected latest updates

§ The New: Applications to BSM Physics

- Neutron electric dipole moment
- \gg New tensor and scalar interactions in neutron β decay

§ The Ugly: Nucleon Axial Charge

✤ Are we facing a new crisis?

Building a Picture of Hadrons

Hadron Structure

> For example, OPE for unpolarized contribution

$$2\int dx \, x^{n-1} F_1(x, Q^2) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$
$$\int dx \, x^{n-2} F_2(x, Q^2) = \sum_{q=u,d} c_{2,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$

Hadron Structure

Gluoníc Momentum Fractíon

§ Exploratory stage: quenched results $O_{\mu\nu} = -\text{tr}_c F_{\mu\alpha} F_{\nu\alpha}$ \Rightarrow Quenched, heavy pion masses, linear chiral extrapolation

§ QCDSF ('97) and LHPC ('07)

➢ Direct matrix-element calculation: $\langle x \rangle_g = 0.53(23)$ QCDSF
➢ HYP-smearing, study pion: $\langle x \rangle_g = 0.6(2)(1)$

§ χQCD K.F. Liu et al., 1203.6388

§ QCDSF R. Horseley et al., 1205.6410

Feynman-Hellmann theorem with modification of the action

$$S \to S + \lambda S_{\mathcal{O}} \longrightarrow \beta \lambda \frac{1}{3} \left(\sum_{\vec{x}, i} \operatorname{Retr}_{c} \left[1 - P_{i4}(\vec{x}) \right] - \sum_{\vec{x}, i < j} \operatorname{Retr}_{c} \left[1 - P_{ij}(\vec{x}) \right] \right)$$

Gluoníc Momentum Fraction

§ χQCD K.F. Liu et al., 1203.6388 & private communication

500 confs, $\langle x \rangle_g = 0.313(56)$

Gluoníc Momentum Fraction

§ QCDSF R. Horseley et al., 1205.6410

➢ Feynman-Hellmann theorem (absorbed operators in the action)
➢ a≈0.1 fm, 24³ Wilson + NP clover, $M_{\pi} \approx 1100-600$ MeV O(500) confs, $\langle x \rangle_g = 0.43(7)$

> Cheap, operator by operator; reweighting for dynamical lattices

Medium Modification

§ The EMC effects J. J. Aubert et al. Phys. Lett. 123, 275 (1983)

- Structure function changes significantly between heavy nuclei and deuterium
- Not only significant for heavy nuclei, also important for light-nuclear systems
 J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)

Medium Modification

§ The EMC effects J. J. Aubert et al. Phys. Lett. 123, 275 (1983)

Structure function changes significantly between heavy nuclei and deuterium

Not only significant for heavy nuclei, also important for light-nuclear systems J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)

0.250§ Important for tests of SM; Standard Model Completed Experiments 0.245e.g. NuTeV anomaly Future Experiments ➢ Evidence for medium SLAC E158 $\sin^2 heta_W^{\overline{MS}}$ 0.240modification effects? APV(Cs) NuTeV 0.235I. Cloët, W. Bentz, A. Thomas, Møller [JLab] Phys. Lett. B693, 462 (2010) Z-pole 0.230Qweak [JLab] PV-DIS [JLab] 0.2250.0010.010.110010001000010Q (GeV)

Medium Modification

§ First lattice-QCD attempt to measure EMC effects
 Pion momentum fraction in pion medium

$$O = O_{\{44\}} - \frac{1}{3} \left(O_{\{11\}} + O_{\{22\}} + O_{\{33\}} \right)$$

⇒ With m_{π} ≈290–490 MeV, 2 lattice spacings

Form Factors

§ Structure function/distribution functions > Deep inelastic scattering (DIS) $\gg \langle x^n \rangle_a, \langle x^n \rangle_{\Delta a}, \langle x^n \rangle_{\delta a} e^-$ § Form factors ✤ Elastic scattering Np' $\gg F_1(Q^2), F_2(Q^2), G_A(Q^2), G_P(Q^2)$ ✤ For example, octet baryons $\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p)$ Pauli Dirac $\langle B | A_{\mu}(q) | B \rangle = \overline{u}_B(p') \left| \gamma_{\mu} \gamma_5 G_A(q^2) + \gamma_5 q_{\nu} \frac{G_P(q^2)}{2M_B} \right| u_B(p)$ Axial Induced Pseudoscalar

Form Factors

 Charges and radii (J. Green, S. Ohta, M. Lin, B. Owen, T. Rae, B. Menadue, V. Guelpers; C. Alexandrou, J. Zanotti)
 Transition form factors (X. Feng; B. Menadue; C. Alexandrou, S. Sasaki)

Large Q² Form Factor

§ Fourier transform using large-Q² form factors to reveal transverse charge densities in a polarized nucleon National Academies Press

Transverse Charge Densíty

§ How does high- Q^2 data affect the charge density?

§ Large-Q² Caveats

Essential to get coordinate-space distribution in central region

- Further studies needed for discretization effects
- ➢ Possible improvement: step-scaling method, ...
- > Important for pion form factor

Form Factors

§ Charge radii

> Lattice data way too low; no help for the proton-radius puzzle

Form Factors

WASHINGTON

Form Factors

Form Factors

§ Charge radii

> Lattice data way too low; no help for the proton-radius puzzle

§ Induced-pseudoscalar

 $g_P = [m_{\mu}G_P(0.88 m_{\mu}^2)/2 m_N]$ > Poor constraints (DWF numbers so far) > Important for muon physics

Generalized Parton Distribution

§ Structure function/distribution functions \Rightarrow Deep inelastic scattering (DIS) $\Rightarrow \langle x^n \rangle_q, \langle x^n \rangle_{\Delta q}, \langle x^n \rangle_{\delta q}$ § Form factors \Rightarrow Elastic scattering $\Rightarrow F_1(Q^2), F_2(Q^2), G_A(Q^2), G_P(Q^2)$

§ Generalized Parton Distribution

> Deeply virtual Compton scattering (DVCS)

 $\begin{array}{l} & \bigstar \langle x^{n-1} \rangle_q = A_{n0}(0), \langle x^{n-1} \rangle_{\Delta q} = A_{n0}(0), \\ & \langle x^n \rangle_{\delta q} = A_{Tn0}(0) \\ & \thickapprox F_1(Q^2) = A_{10}(Q^2), F_2(Q^2) = B_{10}(Q^2), \\ & G_A(Q^2) = \tilde{A}_{10}(Q^2), G_P(Q^2) = \tilde{B}_{10}(Q^2) \\ & \And \text{Nucleon spin } A_{20}(0), B_{20}(0) \end{array}$

Generalized Parton Distribution

Water Dub

 $\langle N(p',s')|\mathcal{O}_{\mu}^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \Big[A_{20}(q^2) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^2) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}(q^2) \frac{1}{m}q^{\{\mu}q^{\nu\}} \Big] u_N(p,s) \,,$

$$\langle N(p',s')|\mathcal{O}_{\#\gamma_5}^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \Big[\tilde{A}_{20}(q^2)\,\gamma^{\{\mu}P^{\nu\}}\gamma^5 + \tilde{B}_{20}(q^2)\,\frac{q^{\{\mu}P^{\nu\}}}{2m}\gamma^5\Big]u_N(p,s)\,.$$

§ Generalized Parton Distribution

Solution we have a straig of the second second

Orígín of Proton Spín

§ What is the makeup of the nucleon?

The origin of the nucleon's spin (the "spin crisis")
For example, LHPC + QCDSF dynamical results

Orígín of Proton Spín

§ What is the makeup of the nucleon?

XQCD, 1203.6388 [hep-ph] and private communication w/ Y. Yang

§ Breakdown:

 ∞ ΔΣ_q=50(2)%, L_q=25(12)% (mostly DI), J_g=25(8)% § Looking forward to χQCD (overlap/DWF), QCDSF (clover)

Applications beyond QCD The The n

Nucleons and BSM

Many opportunities to probe BSM with LQCD Tom Blum, Friday

§ Muon *g*–2

§ Strangeness and dark matter

- § Electric dipole moment➢ CP-violating effect
- SM: $\approx 10^{-30} e$ -cm
- Best SUSY model killer(T. Bhattacharya; E. Shintani)
- § Nucleon beta decay

Ross Young, Thursday

Non-V-A (e.g. scalar and tensor) interactions
Scalar and tensor charges R. Gupta (PNDME), J. Green (LHPC)

n E D M

§ Lagrangian
$$S = S_{\text{QCD}}^{\text{CP Even}} - i \Theta \frac{g^2}{16\pi^2} \int d^4x \, G^{\mu\nu} \, \tilde{G}_{\mu\nu}$$

§ Leading contribution

Nucleon EM form factor eF₃(0)/2M_N RBC, J/E, CP-PACS(2005), ...
 E. Shintani (Improved algorithm to increase statistics)
 Energy shift in nucleon mass with external *E* CP-PACS(2006, 2010),
 Calculate tan[2α(θ)]F₂(0) QCDSF(2011), ...

n E D M

§ Lagrangian
$$S = S_{\text{QCD}}^{\text{CP Even}} - i \Theta \frac{g^2}{16\pi^2} \int d^4x \, G^{\mu\nu} \, \tilde{G}_{\mu\nu}$$

§ Leading contribution

Chiral extrapolation K. Ottnad et al., 2010

-0.015(5) θ e·fm

§ Plenty of room to make improvement

WASHINGTON

$n \mathcal{TDM}$

§ Lagrangian $S = S_{\text{QCD}}^{\text{CP Even}} - i \Theta \frac{g^2}{16\pi^2} \int d^4x \, G^{\mu\nu} \, \tilde{G}_{\mu\nu} +$ $\frac{i e d_{u}^{\gamma}}{\Lambda_{\rm BSM}^{2}} \overline{Q} \,\sigma_{\mu\nu} \,\gamma_{5} \,F^{\mu\nu} \,\tilde{H} \,U + \frac{i e d_{d}^{\gamma}}{\Lambda_{\rm BSM}^{2}} \,\overline{Q} \,\sigma_{\mu\nu} \,\gamma_{5} \,F^{\mu\nu} \,H \,D +$ $\frac{i\,g_3\,d_u^G}{\Lambda_{\rm BSM}^2}\,\overline{Q}\,\sigma_{\mu\nu}\,\gamma_5\,\lambda^A\,G^{\mu\nu\,A}\,\tilde{H}\,U + \frac{i\,g_3\,d_d^G}{\Lambda_{\rm DSM}^2}\,\overline{Q}\,\sigma_{\mu\nu}\,\gamma_5\,\lambda^A\,G^{\mu\nu\,A}\,H\,D$ **§** Leading contribution § Higher-order operators T. Bhattacharya (this conference) -0.02Effective field theory $d_{n}^{-0.04}$ (e fm) △ QCDSF (2f clover, 2011) and proposed LQCD J/E (2f clover, 2008) CP-PACS (2f clover, 2008) calculations CP-PACS (0f clover, 2006) CP-PACS (0f DWF, 2006) -0.08RBC (2f DWF, 2005) -0.100.5 1.0 1.5 2.0 HWL, 1112.2435 m_{π}^2 (GeV²)

BSM Interactions

§ Neutron beta decay could be related to new interactions: R. Gupta (PNDME), Tue. the scalar and tensor

ξ

Tensor and Scalar Charges

§ Tensor charge: the zeroth moment of the transversity $g_T = \delta u - \delta d$

➢ Experimentally, probed through SIDIS: $g_T(Q^2=0.8 \text{ GeV}^2) = 0.77^{+0.18}_{-0.24}$ ➢ Model estimate: 0.8(4)

§ Scalar charge $\langle n | \bar{u} d | p \rangle$ Prior model estimate: $1 \ge g_S \ge 0.25$

Combined with Experiments

Combined with Experiments § Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales New UCN Exp. $O_{BSM} = f_o(\varepsilon_{s,\tau} g_{s,\tau}) \leftarrow Model input$ $\mathcal{E}_{S,T} \propto \Lambda_{S,T}^{-2}$ 0.010 LANL UCN neutron decay exp't $d\Gamma \propto F(E_e) \left| 1 + \right|$ 0.005 SS $-b\frac{m_e}{E_e} + \left(B_0 + B_1\frac{m_e}{E_e}\right)\frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots$ 0 Expect by 2013: Nuclear Exp + Model $g_{S,T}$ $|B_1 - b|_{\rm BSM} < 10^{-3}$ Nuclear Exp + UCN + Model $g_{S,T}$ $|b|_{RSM} < 10^{-3}$ -0.0050.002 -0.002^{0.004} Similar proposal at ORNL by 2015 0 ε_T

Combined with Experiments

High-Energy Constraints

§ Constraints from high-energy experiments? LHC current bounds and near-term expectation

Estimated though effective L $\mathcal{L} = -\frac{\eta_S}{\Lambda_S^2} V_{ud}(\overline{u}d)(\overline{e}P_L\nu_e)$ $-\frac{\eta_T}{\Lambda_T^2} V_{ud}(\overline{u}\sigma^{\mu\nu}P_L d)(\overline{e}\sigma_{\mu\nu}P_L\nu_e)$ Looking at high transverse mass in e_{v+X} channel Compare with W background Estimated 90% C.L. constraints on $\mathcal{E}_{S,T} \propto \Lambda_{S,T}^{-2}$ HWL, 1112.2435; 1109.2542 T. Bhattacharya et al, 1110.6448

The ugly: when should we panic about it?

Nucleon Axíal Charge

What's the Deal with $g_{\mathcal{A}}$?

§ No longer gold-plated?

"Welcome to the lattice and its dangerous animals."

Karl Jansen

PROCEED WITH CAUTION

§ Re-examine all the systematics

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

- § Noise issue
- rightarrow Large t_{sep} loses signal
- § Excited-state contamination
- Nearby excited-state Roper(1440)

§ Hard to extrapolate

 \blacktriangleright Δ resonance nearby; multiple expansions, poor convergence... \blacktriangleright May not be an issue in the physical pion-mass era

§ Requires large volume and statistics

> Ensembles are not always generated with nucleons in mind

§ Trade off: signal-to-noise versus contamination

Noise issue (P. Lepage; D. Kaplan 2011) So For example, CLS/Mainz 2f NP clover, $M_{\pi} \approx 320$ MeV $a \approx 0.063$ fm Fix $N_{meas} = 200$

1205.0180 & private communication

- § Trade off: signal-to-noise versus contamination
 > Noise issue (P. Lepage; D. Kaplan 2011)
 § Options
- Stay at large t_{sink} : RBC/UKQCD (need to check smaller pion mass) Include excited-state degrees of freedom
 - Multistate fitting or variational method from 3pt correlator matrix
 HWL (Lat 2008); ETMC/LHPC/Mainz-CLS (2011); CSSM 2012 (mesons)
- \gg Extend to small t_{sink} to pick up better signal and

apply "summation" method

$$S(t_{\rm s}) := \sum_{t=0}^{t_{\rm s}} R(t, t_{\rm s}) \xrightarrow{t_{\rm s} \gg 0} c + t_{\rm s} \left\{ g_{\rm A}^{\rm bare} + \mathcal{O}(\mathrm{e}^{-\Delta t_{\rm s}}) \right\}$$

 \mathfrak{S}_{A} obtained from slope

§ ETMC C. Alexandrou et al. & private communication
 ≈ 2+1+1f, M_π≈380 MeV, APE+Gaussian increase N_{meas} to O(3000) at largest t_{sep},
 ≈ No effect due to t_{sep} from 0.31–1.01 fm
 ≈ Summation [5,13] is consistent with t=12a plateau fit

§ 0.31 fm, really? Would be interested to see other works§ Check on lighter pion mass

consistent results using largest t_{sep} and summation § My two cents: Not clearly superior

Including excited-states in the analysis is the way to go

- § HWL (2008): simultaneous fit and 3pt correlator matrix
 § PNDME R. Gupta (Tuesday)
- $rac{l}{l}$ 2+1+1f, clover/HISQ; t_{sep} =0.96−1.44 fm
- Sim. fit gives consistent results with largest t_{sep} at each ensemble Will be more aggressive to try our smaller t_{sep}

§ ETMC: variational method

- ≈ 2f, 300 MeV pion, t_{sep} = 1.07 fm
- § CSSM: successful in meson cases B. Owen (Wednesday) nucleon next

May still have an optimal t_{sep} but won't lose as much signal

Finite-Volume Effects

§ How big $M_{\pi}L$ is required?

Finite-Volume Effects

- § How big $M_{\pi}L$ is required?
- § ChPT volume correction/used to estimate systematics ETMC, QCDSF, CLS/Mainz: possibly underestimated?

Finite-Volume Effects

§ How big M_πL is required?
§ ChPT volume correction/used to estimate systematics
>> ETMC, QCDSF, CLS/Mainz: possibly underestimated?

§ Example study (RBC/UKQCD)

Wilson, 1.5 fm O

DBW2, 1.2 fm O

DBW2. 2.4 fm O

0.8

0.6

1.4

1.2

1.0

0.8

0

exp

RBC, Phys.Rev.D68:054509 (2003)

0.4

 M_{π}^2 (GeV²)

0.2

Finite-Volume Effects

Finite-Volume Effects

WASHINGTON

Finite-Volume Effects

WASHINGTON

Chiral Extrapolation

§ Small shift matters?

CLS/Mainz, 1205.0180

§ Blind analysis?
§ More precise studies are needed

Systematics

§ Answers?

- ➢ I have more questions than when I started the review:
- Q: Is large t_{sep} needed for summation method?
 - Do we gain anything? ETMC: "no", CLS/Mainz: "yes"
- Q: Can we get reliable ground-state signal from small t_{sep} ? Current excited-state analysis (PNDME/LHPC) performed at larger t_{sep} , O(1) fm and larger errorbar too big to tell
- § More VM basis analyses (all-to-all, AMA)
- § High-statistics studies are needed!
- § Disappointment?
- Certainly not.

We are just entering into the precision era to explore these issues...

§ Difficulties = opportunities

§ Affects the whole community! When we fail at g_A ...

Exciting time to explore

§ LQCD is building a picture of hadrons

- Revealed proton spin components, hadron impact-space distribution
 New techniques for gluonic, disconnected and in-medium quantities shine new light for more calculations
- § Application of LQCD input to probe BSM
- ✤ Opportunities combining high- (TeV) and low- (GeV) energies
 ✤ Vital input when experiment is limited (e.g. g_S)

§ Aim at high precision and understand/quote systematics!

Backup Slídes

Renormalization

§ QCDSF hypothesis: Z_A might be a problem?

Renormalization

Nucleon Axíal Charge

WASHINGTON

Nucleon Axíal Charge

Nucleon Axíal Charge

SHINGTON Huey-Wen Lin — The XX

§ Structure

 \gg TMDs (M. Engelhardt); disconnected $\langle x^n \rangle$ (M. Sun)

§ Form Factors

- Charges and radii (J. Green, S. Ohta, M. Lin, B. Owen, T. Rae, B. Menadue, V. Guelpers; C. Alexandrou)
 Transition form factors (X. Feng; B. Menadue; C. Alexandrou, S. Sasaki)
- § Generalized Parton Distribution
- $\gg \chi QCD$ (private communication)
- § Electric Dipole Moments
- T. Bhattacharya; E. Shintani
- § Scalar and Tensor Charges
- ➢ R. Gupta (PNDME), J. Green (LHPC)

Systematics

§ Excited-State Contamination

§ ETMC *C.* Alexandrou et al. & private communication

Finite-Volume Effects

- § How big $M_{\pi}L$ is required?
- § Example study (RBC/UKQCD)

RBC/UKQCD arXiv:1003.3387[hep-lat]

§ Fourier transform using large-Q² form factors to reveal transverse charge densities in a polarized nucleon

A Tale of Two Scales

- § LHC strikes out onto the high-energy frontier (8 TeV)
 > Direct measurement of Higgs and BSM particles
- § Many experiments refine low-energy measurements
 > Discern small discrepancies from the Standard Model Muon g-2, Q_{weak}, CKM matrix...
 > Probe small signals that are suppressed in the SM 0vββ, nEDM, dark matter, non-V-A interactions in β decay...

Ultra-Cold Neutrons

§ Worldwide UCN sources

A rapidly expanding resource for nuclear physics Many facilities available and under construction

§ Stay tuned for exciting low-energy precision data

Nucleon Axíal Charge

§ A fundamental measure of nucleon structure § Important to the rate of pp fusion § Axial-vector-current matrix element and $g_A = G_A^{u-d} (Q^2=0)$ $u_B(p)$ **§** Benchmark for nucleon structure § Survey of lattice studies (2011 Nov) QCDSF (2f clover, 2006) QCDSF (2f clover, 2011) ETMC (2f twisted, 2010) RBC (2f DWF, 2008) Lin/Org (2+1f mixed, 2007) RBC/UKQCD (2+1f DWF, 2010) $q_{A}^{LQCD} = 1.16(3)$ LHPC (2+1f mixed, 2010) QCDSF (2+1f clover, 2011) 1.0 14 15 11 12 13

Chiral Extrapolation

§ Chiral extrapolation § Small shift matters?

CLS/Mainz, 1205.0180

Systematics Checklist

- § Focus on *N_f* = 2, 2+1, 2+1+1
- Those who sent me the numbers to establish a database
- § Excited-state contamination
- > Lots of studies in the past few years
- § Finite-volume effects
- § Lattice actions, renormalization and O(a)-improved operators
- § Chiral extrapolation

§ Trade off: signal-to-noise versus contamination
➢ Noise issue (P. Lepage; D. Kaplan 2011)

 \gg Signal falls exponentially as $e^{-m_N t}$

 \gg Noise falls as $e^{-(3/2)m\pi t}$

> Problem worsens with decreasing quark (pion) mass

