Recent results from LHCb

Justine Serrano

Centre de Physique des Particules de Marseille On behalf of the LHCb collaboration

Lattice, June 28th 2012, Cairns

Outline

- LHCb
- Rare B decays
 - $B_{(s)} \rightarrow \mu \mu$
 - $b \rightarrow sll$
 - $b \rightarrow s \gamma$
- Mixing and CPV
 - B_s mixing

 - CVP in charm
 - γ angle
- Spectroscopy
- Semileptonic decays
- Future

LHCb

- Forward spectrometer optimised for heavy flavour physics at the LHC
 - Large acceptance 2<η<5
 - Low trigger thresholds
 - Precise vertexing
 - Efficient particle identification
 - Large boost (B mesons flight ~1cm)
- Running at a constant luminosity of 4.10³² cm⁻² s⁻¹ thanks to the luminosity leveling (design 2.10³²)
- Precision physics easier in a low pile-up environment: interactions per bunch crossing ~1.5

LHCb results

Justine Serrano

Statistics

LHCb Integrated Luminosity at 4 TeV in 2012

• Large cross section: $\sigma(pp \rightarrow bbX)$ @ 7TeV = 284±53 µb (LHCb, PLB 694 209)

 \Rightarrow 100,000 bb pairs produced/second (10⁴ x B factories)

 \Rightarrow Huge sample of B mesons and baryons (and charm as well!)

• But :

Hadronic environment: ~100 tracks/event \rightarrow large background

LHCb does not have a full angular coverage \rightarrow difficult to reconstruct channels with missing particles

Collaboration

Collaboration

804 members 16 countries 55 institutes

>55 publications, >80 preliminary results (conference paper)

Physics program:

- B decay to charmonium
 - B_s mixing, CPV
- B decay to open charm
 - γ, B decay to double charm, rare hadronic B decay
- Rare decays
 - leptonic, electroweak, radiative, LFV
- Charm physics

Mixing and CPV, charm production and spectroscopy

- Charmless B decay
 - $B \rightarrow hh', B \rightarrow VV$
- Semileptonic B decays
 - Search for CPV in mixing, form factors, rare decay
- B hadron and quarkonia
 - Production and spectroscopy
- QCD, electroweak and exotica

EW boson production, new long lived particles

Justine Serrano

Rare B decays

Interest of $B_{s/d} \rightarrow \mu^+ \mu^-$

- FCNC and helicity suppressed decays
- Precise SM prediction:
 - BR(B_s $\rightarrow \mu^{+}\mu^{-}$)= (3.2±0.2) x10⁻⁹
 - BR(B_d $\rightarrow \mu^{+}\mu^{-}$)= (1.1±0.1) x10⁻¹⁰

A.J.Buras: arXiv:1012.1447,

- E. Gamiz et al: Phys.Rev.D 80 (2009) 014503
- Very sensitive to new physics, especially models with extended Higgs sector
 - Ex: in the MSSM, BR scales as tan⁶β / M⁴_A

More generally:

$$BR(B_{s} \rightarrow \mu^{+}\mu^{-}) \propto |C_{s} - C_{s}'|^{2} \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) + |(C_{P} - C_{P}') + \frac{2m_{\mu}}{m_{B_{s}}^{2}}(C_{10} - C_{10}')|^{2}$$
Scalars operators semileptonic operators operators

$B_{s/d} \rightarrow \mu^+ \mu^-$: Analysis strategy

- Limit extracted with the CLs method in bins of
 - μμ invariant mass
 - Output of a Boosted Decision Tree combining geometrical and kinematical informations
- Distributions calibrated on data using B →hh', and dimuon resonances (J/ψ, ψ(2s),Y's)
- Analysis blind
- Open the box:

PRL 108, 231801 (2012)

f_s/f_d

To compute the BR we need to normalize to decay channels with known BR:

 $\begin{array}{l} \mathsf{B}^{+} \rightarrow \mathsf{J}/\psi\mathsf{K}^{+} \quad \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi\phi \quad \mathsf{B}^{0} \rightarrow \pi^{-}\mathsf{K}^{+} \\ \mathrm{BR}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = \mathrm{BR}(B_{q} \rightarrow X) \frac{f_{q}}{f_{s}} \frac{\epsilon_{X}}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_{X}} \end{array}$

• f_s/f_d is measured at LHCb with hadronic decays using $B^0 \rightarrow D^- K^+/\pi^+$ and $B_s \rightarrow D_s^-\pi^+$ (method from R. Fleischer et al, PRD 82, 034038)

$$\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{\epsilon_{DK}}{\epsilon_{D_s\pi}} \frac{N_{D_s\pi}}{N_{DK}}\right] \times \frac{1}{\mathcal{N}_a \mathcal{N}_F}$$

Result with
$$B^0 \rightarrow D^- K^+$$
:
 $\frac{f_s}{f_d} = 0.250 \pm 0.024_{stat} \pm 0.017_{syst} \pm 0.017_{theo}$
PRL 107 21(2011)

Dominant systematics from form factors ratio

$$\mathcal{N}_F = \left[\frac{f_0^{(s)}(M_\pi^2)}{f_0^{(d)}(M_K^2)}\right]^2$$

LHCb result use LCSR, new lattice calculation by Fermilab/MILC arXiv:1202.6346

• And semileptonic decays: $B_s \rightarrow D_s X \mu$ and $B \rightarrow D^+ X \mu$

PRD 85, 032008 (2011)

• We compute the average:

$$\frac{f_s}{f_d} = 0.267^{+0.021}_{-0.020}$$

LHCb-CONF-2011-034

$B_{s/d} \rightarrow \mu^+ \mu^-$: results

 Expected bkg+SM
 7.2 x10⁻⁹

 Observed
 1.0 x10⁻⁹
 4.5 x10⁻⁹

- CMS (5 fb⁻¹): BR(B_s→μ⁺μ⁻) < 7.7 x10⁻⁹ @ 95% CL (Expected: 8.4 x10⁻⁹) arXiv:1204.0735
- ATLAS (2.4 fb⁻¹): BR($B_s \rightarrow \mu^+ \mu^-$) < 22 x10⁻⁹ @ 95% CL arXiv:1203.3976

LHCb results

LHCb-CONF-2012-017

$B_{s/d} \rightarrow \mu^+ \mu^-$ implications

LHCb results

$B_s \rightarrow \mu^+ \mu^-$: Experimental limit and SM prediction

• Significant NP BR enhancement in $B_s \rightarrow \mu^+ \mu^-$ has been ruled out by the LHC, we are getting close to the SM value

 \Rightarrow It's important to understand the central value and uncertainty of the SM predictions

• So far we used Buras prediction BR($B_s \rightarrow \mu^+ \mu^-$)= (3.2±0.2) x10⁻⁹

 $\mathcal{B}(B_q \to \mu^+ \mu^-) = 4.36 \cdot 10^{-10} \frac{\tau_{B_q}}{\hat{B}_q} \frac{Y^2(v)}{S(v)} \Delta M_q \quad \text{with } \mathsf{B_s} = 1.33 \pm 0.06 \quad \begin{array}{l} \mathsf{E. \ Gamiz \ et \ al, \ Phys. Rev. D} \\ 80 \ (2009) \ 014503 \end{array}$

Other possibility: take advantage of the improvement in f_{Bs} from Lattice :

$B_{s/d} \rightarrow \mu^+ \mu^-$: Experimental limit and SM prediction

- De Bruyn et al (arXiv:1204.1735): Need to take into account the B_s mixing
 - Theoretically: CP-average at t=0
 - Experimentally: CP-average integrated over t

$$BF (B_s \to f)_{theo} = \begin{bmatrix} \frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \end{bmatrix} BF (B_s \to f)_{exp} \qquad y_s = \frac{\Delta\Gamma_s}{2\Gamma_s}$$

$$0.911 \pm 0.014 \text{ for } B_s \to \mu^+\mu^- \text{ using}$$

$$y_s \text{ from } LHCb\text{-}CONF\text{-}2012\text{-}002$$

$$BR_{theo}(B_s \to \mu^+\mu^-) < 4.5^*0.911 = 4.1 \times 10^{-9} @ 95\% \text{ CL}$$

$B_{s/d} \rightarrow \mu^+ \mu^-$: what's next?

Lot of activity in the last 2 years!

- CMS/ATLAS expect 15 fb⁻¹ at the end of 2012
- LHCb expect 1.5 fb⁻¹ at the end of 2012
- A first observation may come soon, stay tuned!

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$

- Give access to $c^{(')}_{7}$, $c^{(')}_{9}$, $c^{(')}_{10}$
- Sensitivity through branching fraction measurement and angular observables
- Decay described by 3 angles and dimuon invariant mass squared q²

• Folding the ϕ angle (if $\phi < 0$, $\phi = \phi + \pi$), we can reduce the number of free parameters:

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\hat{\phi}\,\mathrm{d}q^{2}} = \frac{9}{16\pi} \left[F_{L}\cos^{2}\theta_{K} + \frac{3}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K}) - F_{L}\cos^{2}\theta_{K}(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + S_{3}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\cos 2\hat{\phi} + \frac{4}{3}A_{FB}(1 - \cos^{2}\theta_{K})\cos\theta_{\ell} + S_{9}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\sin 2\hat{\phi} \right]$$

Angular observables

LHCb results

Justine Serrano

$B_d {\rightarrow} K^{*0} \mu^+ \mu^-$

- Analysis performed on 1fb⁻¹ LHCb-CONF-2012-008
- Observe 900±34 events (Babar+Belle+CDF~600)
- Differential BR obtained with mass fits in 6 q² bins

Theory

Binned theory

$\rm F_L$ and $\rm A_{\rm FB}$

- In the SM A_{FB} changes sign at a well defined point where leading uncertainties from B→K* form factors cancel
- SM predictions 3.9-4.3 GeV²
- Estimate the zero crossing point fitting separately q² and invariant mass distributions for forward and backward going events

$$q_0^2 = 4.9^{+1.1}_{-1.3} GeV^2 / c^4$$
 (preliminary)

S_3 and S_9

LHCb-CONF-2012-008

All compatible with standard model...

Comparison with other experiments

CDF, PRL 108 (2012) Belle, PRL 103 (2009)

BaBar prelim., Lake Louise 2012

Isospin asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$

• Reconstruct $B \rightarrow K^{(*)}\mu^+\mu^-$ with $K^0 \rightarrow K^0_s \rightarrow \pi \pi$

arXiv:1205.3422

$$\mathcal{B}(B_d \to K^0 \mu^+ \mu^-) = (0.31^{+0.07}_{-0.06}) \times 10^{-6}$$
$$\mathcal{B}(B_u \to K^{*+} \mu^+ \mu^-) = (1.16 \pm 0.19) \times 10^{-6}$$

 $A_{\rm I} = \frac{\Gamma(B_d \to K^{(*)0} \mu^+ \mu^-) - \Gamma(B_u \to K^{(*)+} \mu^+ \mu^-)}{\Gamma(B_d \to K^{(*)0} \mu^+ \mu^-) + \Gamma(B_u \to K^{(*)+} \mu^+ \mu^-)}$ Expected to be very close to 0 in SM

Consistent with Belle and Babar measurement but <0 for $B \rightarrow K\mu^+\mu^-$ (naïve average over q² bins gives 4.4 σ effect), unexpected! Need more statistics.

$B_s \!\! \to \!\! \varphi \mu^+ \mu^-$

LHCb-CONF-2012-003

- Measure $B_s \rightarrow \phi \mu^+ \mu^-$ normalized to $B_s \rightarrow J/\psi \phi$ with 1 fb⁻¹
- Observe 77±10 signal candidates

 $BR(B_s \rightarrow \phi \mu^+ \mu^-) = (0.78 \pm 0.10(stat) \pm 0.06(syst) \pm 0.28(BR)) \ 10^{-6}$

- Lower than but still compatible with CDF result (PRL,107(2011) 201802)
- Also obtain the partial BR as function of q²

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

- Very rare decay in SM: BR=(2±0.2)x10⁻⁸ Hai-Zhen et al, Commun. Theor. Phys. **50** 696
- Previous best limit from Belle BR<6.9x10⁻⁸ PRD 78 (2008)
- LHCb observe
 25.3^{+6.7}₋₆₄ candidates in 1fb⁻¹

 $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$

First observation at 5.2 σ (rarest B decay observed!!)

CP asymmetry in $B \rightarrow K^* \gamma$

Precise SM prediction

Y. Keun et al PRD 72,014013 $A_{CP}^{SM}(B^0 \to K^{*0} \gamma) = -0.0061 \pm 0.0043$

Previous best measurement by Babar

 $A_{CP}^{Exp}(B^0 \to K^{*0} \gamma) = -0.016 \pm 0.022 \pm 0.007$ PRL 103, 211802

LHCb has the most precise measurement, in agreement with SM

$$A_{CP}(B^0 \to K^{*0} \gamma) = 0.008 \pm 0.017 \pm 0.009$$

LHCb-CONF-2012-004

LHCb results

$b \rightarrow s$ implications: bound on Wilson coefficients

- Several studies, ex: Straub et al, arXiv:1206.0273
- Model independent constraint $C_i = C_i^{SM} + C_i^{NP}$
- Over constraint Wilson coefficients with many measurements in a global fit

Wilson coefficients compatible with their SM values at 95%CL

CP violation and B_s mixing

Δm_s

LHCb-CONF-2011-050

- Measure Δm_s in flavour-tagged analysis of $B_s \rightarrow D_s^-\pi^+$ events
- Signal decay time probability:

$$\mathcal{P}_t(t,q|\sigma_t,\eta) \propto \left\{ \Gamma_s e^{-\Gamma_s t} \frac{1}{2} \left[\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + q \left[1 - 2\omega(\eta)\right] \cos(\Delta m_s t) \right] \theta(t) \right\}$$
$$\otimes G(t, S_{\sigma_t} \sigma_t) \epsilon(t) \epsilon_s.$$

q: tagging decision ω: mistag probablity

- Use same side and opposite side tagging
 - SS: use the kaon associated to the B_s production, $\epsilon(SS) = 1.3\pm0.4\%$
 - OS: look at the flavour of the other B, $\epsilon(OS)=2.1\pm0.2\%$
- In 0.34 fb⁻¹:

 Δm_{s} = 17.725 \pm 0.041 \pm 0.026 ps⁻¹

(preliminary)

World best measurement, still statistically limited

$\varphi_s \text{ in } B_s \! \rightarrow J \! / \psi \varphi$

- Interference between mixing and decay gives rise to a CP violating phase
- Very precisely predicted in SM $\phi_s^{SM} \approx -2 \arg\left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cs}^*}\right) = 0.036 \pm 0.002 \ rad$

Charles et al, PRD84 (2011) 033005

- $B_s \rightarrow J/\psi \phi$ is a mixing of CP odd and even final state. Need an analysis
 - Time dependent
 - Tagged
 - Full angular
 - Should measure also $\Delta\Gamma_s$

$\varphi_s \text{ in } B_s \!\rightarrow J\!/\psi \varphi$

LHCb-CONF-2012-002

Using 1 fb⁻¹: $\phi_s = 0.00\pm0.10\pm0.03$ rad (preliminary)

$\varphi_s \text{ in } B_s \! \rightarrow J \! / \psi \; \pi \pi$

Region of mass around f₀ gives a CP-odd final state, no need to do an angular analysis.

 LHCb-PAPER-2012-006

• Preliminary combination of $B_s \rightarrow J/\psi \varphi$ and $B_s \rightarrow J/\psi \pi \pi$:

 $\phi_s = -0.002 \pm 0.083 \pm 0.027$ rad

LHCb-CONF-2012-006

No big non-SM effect in ϕ_s , but still worth to improve the precision

 \Rightarrow Need to evaluate the penguins pollution (Fleisher et al, arXiv:0810.4248)

CPV in charm

Measure the difference of CP asymmetry

SM hadronic effect or new physics ?? Theoretical work ongoing...

Status of UT

- Overall consistency at ~2σ level
- Some discrepancy at 2-3 σ level between $sin(2\beta)$ and $B \rightarrow \tau \upsilon$

 γ obtained from interference between b →c and b→u transitions

$$\gamma = \arg \left(- \frac{\textit{V}_{\textit{ud}} \textit{V}_{\textit{ub}}^{\star}}{\textit{V}_{\textit{cd}} \textit{V}_{\textit{cb}}^{\star}} \right)$$

- γ is the least well know of the UT angles $\gamma = (75.5 \pm 10.5)^{\circ}$ average from UTfit
- Indirect contraints :
 γ = (68.5±3.2)° UTfit
 - γ = (67.1±4.3)° CKMFitter

How to measure γ

- Same final state, 3 techniques :
 - GLW (*PLB 265(1-2),172*): use a CP mode for the D⁰ decay

 $R_{GLW} = 1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma$ $A_{GLW} = 2r_{B}\sin\delta_{B}\sin\gamma/R_{GLW}$

• ADS (*PRL 78(17), 3257*): use D⁰ CA (K⁻ π ⁺) mode for the V_{ub} decay and D⁰ DCS (K⁺ π ⁻) for the V_{cb} decay

 $R_{ADS} = r_{\rm B}^2 + r_{\rm D}^2 + 2r_{\rm B}r_{\rm D}\cos(\delta_{\rm B} + \delta_{\rm D})\cos\gamma$ $A_{ADS} = 2r_{\rm B}r_{\rm D}\sin(\delta_{\rm B} + \delta_{\rm D})\sin\gamma/R_{ADS}$

- Dalitz GGSZ (*PRD 68(5), 054018*) : use the $D^0 \rightarrow K_S \pi \pi$ or $K_S KK$ decays
- Also time dependent analysis with eg $B_s \rightarrow D_s K$

CP violation in $B \rightarrow Dh$

PLB, 712(2012) 203

World most precise ADS/GLW of $B \rightarrow DK$:

- First observation of B \rightarrow DK ADS mode with ~10 σ
- Evidence of a large asymmetry in DK : -0.52 \pm 0.15 \pm 0.02 (4 σ)
- With KK, $\pi\pi,$ CPV in B \rightarrow DK observed at 5.8 σ

Prospects for γ :

- Many more LHCb results: $B^0 \rightarrow D^0 K^{*0}$, $\Lambda_b \rightarrow DpK$, $B_s \rightarrow D_s K$, $B^0 \rightarrow Dhhh$
- LHCb is competitive with B factories and Tevatron
- B_s modes are entering the game

Some spectroscopy

 $B_{(s)}^{**}$ observation

• Search in final states $B^+K^- B^+\pi^- B^0\pi^+$ in 0.33 fb⁻¹

LHCb-CONF-2011-053

No measurement of quantum numbers, matching to expected HQET states

$$\begin{split} M_{B_{s1}^0} &= (5828.99 \pm 0.08_{\text{stat}} \pm 0.13_{\text{syst}} \pm 0.45_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \\ M_{B_{s2}^{*0}} &= (5839.67 \pm 0.13_{\text{stat}} \pm 0.17_{\text{syst}} \pm 0.29_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \\ M_{B_1^0} &= (5724.1 \pm 1.7_{\text{stat}} \pm 2.0_{\text{syst}} \pm 0.5_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \\ M_{B_1^+} &= (5726.3 \pm 1.9_{\text{stat}} \pm 3.0_{\text{syst}} \pm 0.5_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \\ M_{B_2^{*0}} &= (5738.6 \pm 1.2_{\text{stat}} \pm 1.2_{\text{syst}} \pm 0.3_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \\ M_{B_2^{*+}} &= (5739.0 \pm 3.3_{\text{stat}} \pm 1.6_{\text{syst}} \pm 0.3_{\text{syst}}^{B \text{ mass}}) \text{ MeV}/c^2, \end{split}$$

First measurement of B_1^+ and B_2^{*+} mass, consistent with isospin partner

Justine Serrano

Λ_b^{0*} first observation

arXiv:1205.3652

- Quark model predicts the existence of 2 orbitally excited Λ_b^0 states with $J^p = 1/2^-$ and $3/2^-$
- 2 narrow states are observed in the $\Lambda_b^0 \pi^+ \pi^-$ spectra

And more...

- B_c mass (preliminary): $M(B_c^+) = 6268.0 \pm 4.0 \pm 0.6 \text{ MeV}/c^2$
- World best measurement of B⁺, B_d, B_s and Λ_{b} masses

LHCb Best previous Quantity PDG fit measurement measurement $M(B^+)$ 5279.17 ± 0.29 5279.38 ± 0.35 5279.10 ± 0.55 [4] $M(B^0)$ 5279.58 ± 0.32 5279.50 ± 0.30 5279.63 ± 0.62 [4] $M(B^0_{\circ})$ 5366.01 ± 0.80 [4] 5366.90 ± 0.36 5366.3 ± 0.6 $M(\Lambda_{h}^{0})$ 5619.19 ± 0.76 5619.7 ± 1.7 [4] $M(B^0) - M(B^+)$ 0.20 ± 0.20 0.33 ± 0.06 [15] 0.33 ± 0.06 $M(B_{s}^{0}) - M(B^{+})$ 87.52 ± 0.32 $M(\Lambda^0_h) - M(B^+)$ 339.81 ± 0.72

[4] CDF, [PRL 96 (2006)] , [15] BaBar, [PRD 78 (2008)]

- Baryons: $M_{\Xi_b^-} = 5796.5 \pm 1.2 \pm 1.2 \,\mathrm{MeV}/c^2$ $M_{\Omega_b^-} = 6050.3 \pm 4.5 \pm 2.2 \,\mathrm{MeV}/c^2$ $M_{\Xi_b^0} = 5802.0 \pm 5.5 \pm 1.7 \,\mathrm{MeV}/c^2$ *LHCb-CONF-2011-036*
- Exotic onia: X(3872), X(4140), X(4274)

EPJC 72 (2012) 1972, PRD 85 (2012) 091103(R)

LHCb-CONF-2011-027 LHCb-PAPER-2011-035

Semileptonic decays

Semileptonic decays

- Semileptonic B⁰, B⁺, B_s and Λ_b decays have been used to study bb production and hadronization fractions in LHCb
- Ongoing programme to measure:
 - Semileptonic asymmetry A_{sl} using $B_s \rightarrow D_s \mu \upsilon$
 - Exclusive Cabibbo favoured and suppress decays form factors and CKM parameters. Ex: V_{ub} from $B_s \rightarrow K\mu \upsilon$
- Can perform neutrino 'reconstruction' (with 2-fold ambiguity) using B pointing constraint

LHCb results

Future

Plans

- New physics has not shown itself clearly at the LHC
- Essential to improve measurements of precisely predicted quantities
- Need more statistics: LHCb upgrade

LHCb upgrade

 Main limitation that prevents expoiting higher luminosity is the hardware trigger limiting the output rate at 1 MHz

- Propose to remove the hardware trigger and read out LHCb at 40MHz crossing rate
 ⇒ increase yields by 10-20 at 1-2 10³³cm²s⁻¹
 ⇒ aim to collect 50 fb⁻¹
- LOI submitted to LHCC in March 2011, physics case endorsed
- Framework TDR submitted in may 2012

Sensitivity to key chanels

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 imes 10^{-3}$ [18]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\text{eff}}(B^0_s \to \phi \gamma)$	_	0.13%	0.03%	0.02%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	8%	2.5%	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [2]	$0.5 imes 10^{-9}$	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 20^{\circ} \ [19]$	4°	0.9°	negligible
$\mathbf{triangle}$	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	$0.07 imes 10^{-3}$	_
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	-

Conclusion

- Excellent performances of LHC and LHCb in 2011 and 2012
- Large number of new heavy flavour results presented in the last year, more to come at the Summer and Autumn conferences
- Large effect of NP ruled out in flavour physics, but still an important potential for NP discovery

 \Rightarrow What matters is the experimental precision and theoretical cleanliness

Exciting decade to come for flavour physics, we are just at the beginning!

LFV: search for $\tau \rightarrow \mu \mu \mu$

- Lepton flavour violating decay predicted to have BR~10⁻⁵⁴ in the SM
- Beyond SM predictions
 - Variant of SUSY: BR~10⁻¹⁰
 - Non universal Z': BR~10⁻⁸
- LHCb limit from 1fb⁻¹
- BR< 6.1(7.8)x10⁻⁸ at 90(95)%CL
 - Babar: BR< 3.3x10⁻⁸ at 90%CL
 - Belle: BR< 2.1x10⁻⁸ at 90%CL
- Proof of principle, measurement can be made at hadron collider
- With 1fb⁻¹, LHCb is close to B factory sensitivity, excellent prospects for next year and LHCb Upgrade

LHCB-CONF-2012-015

A nice signal candidate!

LHCb results

Justine Serrano

Exotic onia

- LHCb results on inclusive X(3872) using 2010 data:
 - Measured mass consistent with, but not competitive yet, with the measurements by CDF and Belle.
 - Good efficiency, mass resolution and S/B. Potential to do the best mass measurement with the 2011 data.
 - The measured cross-section somewhat lower than predicted by Artoisenet-Braaten from the Tevatron data.
 - Will determine long-livetime / prompt ratio with the 2011 data
- Worlds best signal statistics for B+→X(3872)K+, X(3872)→J/ψπ⁺π⁻in the 2011 data:
 - JPC determination and BR measurement in progress
- LHCb search for X(4140) in B+ \rightarrow X(4140)K+, X(4140) \rightarrow J/ $\psi\phi$:
 - The most sensitive measurement to date
 - Don't find evidence for this state in 2.4 disagreement with the CDF
- Other work in progress:
 - We have the worlds best statistics for B⁰→ψ(2S)π⁺K⁻.
 Probe for Z(4430)⁺ →ψ(2S)π⁺ (claimed by Belle, but not confirmed by BaBar).

fs/fd

R. Fleischer, N. Serra, and N. Tuning, Phys. Rev. D82, 034038 (2010), arXiv:1004.3982: $\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{\epsilon_{DK}}{\epsilon_{D_s\pi}} \frac{N_{D_s\pi}}{N_{DK}}\right] \times \frac{1}{\mathcal{N}_a \mathcal{N}_F} \qquad \mathcal{N}_a = \left[\frac{a_1^{(s)}(D_s^+\pi^-)}{a_1^{(d)}(D^+K^-)}\right]^2,$

a: account for the deviation from the naive factorization

f₀: form factors for the corresponding semileptonic decays

• LHCb measurement with hadronic modes, using N_F =1.24±0.08 from QCD sum rules:

DK:
$$\left(\frac{f_s}{f_d}\right)_{h1} = 0.250 \pm 0.024 (\text{stat}) \pm 0.017 (\text{syst}) \pm 0.017 (\text{theor}),$$

$$\rm N_{\rm F}$$
 is the largest systematics

 $\mathcal{N}_F = \left[\frac{f_0^{(s)}(M_\pi^2)}{f_0^{(d)}(M_\pi^2)} \right]^2.$

DT:
$$\left(\frac{f_s}{f_d}\right)_{h2} = 0.256 \pm 0.014(\text{stat}) \pm 0.019(\text{syst}) \pm 0.026(\text{theor}).$$

Using semileptonic $\left(\frac{f_s}{f_d}\right)_{sl} = 0.268 \pm 0.008(\text{stat})^{+0.022}_{-0.020}(\text{syst}),$

• New lattice computation by Fermilab and MILC, http://arxiv.org/abs/1202.6346

$$N_{F}$$
=1.094±0.088 ±0.030

But still the dominant systematic for the hadronic determination of fs/fd

Justine Serrano