Effect of the Schrödinger functional boundary conditions on the convergence of step scaling

Tuomas Karavirta

University of Jyväskylä

25.6.2012

(in collaboration with K. Rummukainen and K. Tuominen)

Based on Phys. Rev. D 85, 054506 (2012), [arXiv:1201.1883 [hep-lat]]

< 同 > < 回 > < 回 > <

Outline

Motivation

- 2 Theory
- Fundamental domain
- Higher representations
- Fundamental representation
- Gauge part for SU(2)
- Conclusion

Figure: Fermionic parts of the Lattice step scaling function with fundamental (left) and higher representation (right) fermions.

 Step scaling converges extremely slowly with higher representation fermions even after improvement

Theory: Lattice action

O(a) improved wilson action for SU(N) in the Schrödinger functional scheme

$$\begin{split} S &= S_G + \delta S_{G,b} + S_F + S_{gf} + S_{FP}, \\ S_G &= \frac{1}{g_0^2} \sum_p \operatorname{Tr}[1 - U(p)], \\ \delta S_{G,b} &= \frac{1}{g_0^2} (c_t - 1) \sum_{p_t} \operatorname{Tr}[1 - U(p_t)], \\ S_F &= a^4 \sum_x \left[\bar{\psi}(x) \left(D + m_0 + \frac{\mathrm{i} a c_{SW}}{4} \sigma_{\mu\nu} F_{\mu\nu}(x) \right) \psi(x) \right]. \end{split}$$

- The improvement coefficient c_t is set to its one loop perturbative value and $c_{sw} = 1$
- For the specific form of S_{gf} and S_{FP}, see¹
- 1M. Lüscher, R. Narayanan, P. Weisz, U. Wolff, hep-lat/9207009v1 💿 💿 👁

Schrödinger functional boundary conditions

$$U_k(t=0,\vec{x}) = \exp[aC_k], \quad U_k(t=L,\vec{x}) = \exp[aC'_k]$$

$$C_{k} = \frac{1}{L} \operatorname{diag}(\phi_{1}(\eta), \dots, \phi_{n}(\eta)), \quad C'_{k} = \frac{1}{L} \operatorname{diag}(\phi'_{1}(\eta), \dots, \phi'_{n}(\eta))$$

These boundary conditions induce a constant chromo-electric field

Effective action

$$\Gamma = -\ln\left\{\int D[\psi]D[\bar{\psi}]D[U]D[c]D[\bar{c}]e^{-S}\right\} = g_0^{-2}\Gamma_0 + \Gamma_1 + \mathcal{O}(g_0^2)$$

Theory: Step scaling

Running coupling

$$g^2 = rac{\partial \Gamma_0}{\partial \eta} / rac{\partial \Gamma}{\partial \eta} = g_0^2 - g_0^4 rac{\partial \Gamma_1}{\partial \eta} / rac{\partial \Gamma_0}{\partial \eta} + \mathcal{O}(g_0^6)$$

 The method used to calculate the running coupling perturbatively follows² and³

Definition of the Lattice step scaling function and its perturbative expansion to one-loop order

$$\begin{split} \Sigma(u, s, L/a) &= g^2(g_0, sL/a)|_{g^2(g_0, L/a) = u} \\ &= u + \left[\Sigma_{1,0}(s, L/a) + \Sigma_{1,1}(s, L/a) N_F \right] u^2, \end{split}$$

²S. Sint, R. Sommer, hep-lat/9508012 ³M. Lüscher, R. Narayanan, P. Weisz, U. Wolff, hep-lat/9207009v1 € ► ₹ ೨९৫৫

Definition of δ_i

$$\delta_i = \frac{\sum_{1,i}(2,L/a)}{\sigma_{1,i}(2)} = \frac{\sum_{1,i}(2,L/a)}{2b_{0,i}\ln 2}, \qquad i = 0, 1.$$

$$b_{0,0} = 11N_c/(48\pi^2), \qquad b_{0,1} = N_f T_R/(12\pi^2).$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Fundamental domain

$$\phi_1 < \phi_2 < \ldots < \phi_n, \quad |\phi_i - \phi_j| < 2\pi, \quad \sum_{i=1}^N \phi_i = 0.$$

 Boundary fields of this type lead to a unique (up to a gauge transformation) minimal action⁴

Boundary fields for SU(2)

$$\begin{array}{rcl} \phi_1 & = & -\eta & & \phi_1' & = & \eta - \rho, \\ \phi_2 & = & \eta, & & \phi_2' & = & \rho - \eta. \end{array}$$

• Conventional choice $\eta = \pi/4$, $\rho = \pi$.

⁴M. Lüscher, R. Narayanan, P. Weisz, U. Wolff, hep-lat/9207009v1 💿 💿 🗠

Boundary fields for SU(3)

$$\begin{array}{rcl} \phi_1 &=& \eta-\rho & & \phi_1' &=& -\phi_1-4\rho, \\ \phi_2 &=& \eta(\nu-1/2), & & \phi_2' &=& -\phi_3+2\rho, \\ \phi_3 &=& -\eta(\nu+1/2)+\rho, & & \phi_3' &=& -\phi_2+2\rho. \end{array}$$

• Conventional choice $\eta = 0, \rho = \pi/3, \nu = 0.5$

⁵M. Lüscher, R. Sommer, P. Weisz, U. Wolff, hep-lat/9309005 = + (= +)

Figure: Fermionic part of the Lattice step scaling function for SU(2) with adjoint fermions at L = 10. $|\delta_1 - 1|$ ploted as a function of η/π and ρ/π . Optimal choice $\rho = \frac{\pi}{2}$ and $\eta = \frac{\pi}{8}$.

Figure: Fermionic part of the Lattice step scaling function for SU(3) with adjoint fermions at L = 10. $|\delta_1 - 1|$ ploted as a function of η/π and ρ/π . Optimal choice $\rho = \frac{\pi}{6}$ and $\eta = -\frac{\pi}{9}$.

Higher representations

Figure: Fermionic part of the Lattice step scaling function for SU(3) with sextet fermions at L = 10. $|\delta_1 - 1|$ ploted as a function of η/π and ρ/π . Optimal choice $\rho = \frac{67\pi}{150}$ and $\eta = -\frac{\pi}{3}$.

Higher representations

Figure: Fermionic part of the Lattice step scaling function for higher representation fermions with new boundary conditions.

Fundamental representation

Figure: Fermionic part of the Lattice step scaling function for SU(2) with fundamental fermions at L = 10. $|\delta_1 - 1|$ ploted as a function of η/π and ρ/π . Conventional choice $\rho = \pi$ and $\eta = \frac{\pi}{4}$.

Gauge part for SU(2)

Figure: Gauge part of the Lattice step scaling function for *SU*(2) at L = 10. $|\delta_0 - 1|$ ploted as a function of η/π and ρ/π .

-

크

Gauge part for SU(2)

Figure: Gauge part of the Lattice step scaling function for SU(2) with old and new boundary conditions for adjoint fermions.

- Improvement needed to remove O(a) terms from perturbative step scaling
- Careful choice of the boundary fields as important to minimize the higher order effects

Thank you!

▲御▶ ▲ 国▶ ▲ 国▶ …

크