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•Many Flavor QCD [MFQCD]
⇔ Dynamical Electroweak symmetry breaking, i.e. Technicolor
•The thermodynamical properties of MFQCD, especially its 

nature of the chiral phase transition, is important from the 
viewpoint of EW baryogenesis within TC.

Appelquist, Schwetz and Selipsky, PRD52, 4741 (1995);
Kikukawa, Kohda and Yasuda, PRD77 (2008) 015014

•We study MFQCD at finite temperature.
•Progress report is given.

Introduction



Columbia plot
Brown, Butler, Chen, Christ, Dong, Schaffer, Unger, and Vaccarino (90),
N.H. Christ, Z. Dong (92) and N.H. Christ(92)

When NF ≧ 3, Chiral Phase 
Transition is 1st order.
Pisarski and Wilczek, PRD 29, 338 (1984) 
and more?

How does this plot for 
MFQCD look like?

Kanaya, Lattice 2010
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Finite Temperature QCD on the Lattice – Status 2010 Kazuyuki Kanaya

Figure 3: Order of the finite temperature transition in 2+1 flavor QCD as a function of the degenerate u

and d quark mass m

ud

and the s quark mass m

s

. (Left) The standard scenario with the second order chiral
transition for two-flavor QCD. (Right) An alternative scenario when the two-flavor chiral transition is first
order.

experimental investigations of QGP. Estimation of T

c

in 2+1 flavor QCD has been made based on
large-scale simulations using various improved staggered quarks. However, there has been a big
discrepancy in the values of T

c

among different groups for more than five years. This year, the main
part of the discrepancy has been removed.

The nature of the transition in the chiral limit of two-flavor QCD (the upper left edge of the
figure) has significant implications for the nature of the transition at the physical point too. The
left panel of Fig. 3 summarizes the standard scenario in which the chiral transition of two-flavor
QCD is second order in the universality class of the O(4) Heisenberg model [33]. In this case,
because the chiral transition of three-flavor QCD is of first order, we have a tricritical point on
the left edge of the figure (m

ud

= 0) where the order of the transition changes from the second
order to the first order. Depending on the location of the tricritical point relative to the physical
point, the universality class dominating the parameter dependence around the physical point will
be different. The right panel of Fig. 3 shows an alternative scenario in which the chiral transition of
two-flavor QCD is first order. In this case, we have no tricritical point and thus no regions for the
O(4) universality class. A distinction between the two scenarios is important for studies at finite
densities too. Although the majority view the standard scenario as more probable, the nature of the
two-flavor chiral transition was not fully fixed. This year, we had some advances.

In this section, I discuss these developments.

3.1 Transition temperature

In 2005, the MILC Collaboration obtained T

c

= 169(12)(4) MeV in the combined chiral and
continuum limit from a measurement of a chiral susceptibility in 2+1 flavor QCD with asqtad
quarks and the one-loop Symanzik glues on N

t

= 4–8 lattices [34], where the scale was set by r1

and the O(4) critical exponent was adopted in the chiral extrapolation. In 2006, the Wuppertal-
Budapest Collaboration has published their values based on a study of the 2+1 flavor QCD with a
stout-link improved staggered quarks coupled to the tree-level Symanzik glues [35]. Carrying out
a chiral extrapolation to the physical point and a continuum extrapolation using N

t

= 6–10 lattices,
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In TC, 2 of NF must be 
exact massless.

NFcrit > 4 is assumed.
Symmetric under reflection 
wrt diagonal line.
Running of g2 is not slow 
enough.
Less interesting.

NF =4 (< NFcrit)
[2 flavors of NF are exact massless.]
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1st order persists to mU,D = ∞ 
for small mTQ.
Slow running and large γm is 
expected at some value of NF.
For TC model containing EW 
baryogenesis, important to 
identify the location of the 1st 
order region.
Appelquist, Schwetz and Selipsky, 
PRD52, 4741 (1995).
Kikukawa, Kohda and Yasuda, PRD77 
(2008) 015014

Phenomenologically 
interesting!

5 ≦ NF < NFcrit

[2 flavors of NF are exact massless.]
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•In this exploratory study, we employ the standard Wilson 
plaquette gauge action and the plain Wilson Fermion to 
explore the Wilson Phase Diagram [β-K plane]. 
•The parameters:
- V = NS3 x NT = {8^3 x 4, 8^3 x 8, 16^3 x 8}
- SU(3) gauge theory with {4, 6, 10} degenerate flavors

•The β-K plane is scanned and <P> and <|L|> are measured 
at each (β,K) to identify the phase.

Strategy: overview



Wilson Phase diagram for confining 
theory (NF < NFcrit)  Iwasaki et al. (91,04)

If the theory is confining, 
the transition line moves to 
the right as NT increases.

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.

IWASAKI et al. PHYSICAL REVIEW D 69, 014507 #2004$
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Wilson Phase diagram for confining 
theory (NF < NFcrit)  Iwasaki et al. (91,04)

If the theory is confining, 
the transition line moves to 
the right as NT increases.
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Strategy: details

✓ By scanning β-K plain, find the critical endpoint 
around mq=0 (not around mq=∞).

✓ See whether the endpoint moves to the right or not 
while changing NT.

✓ βCP = β @ critical endpoint



Finding Critical Endpoint:Histogram Method and Re-weighting
Saito et al, [WHOT-QCD], PRD84, 054502 (2011); S. Ejiri, Phys. Rev. D 77, 014508 (2008)
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Phase 1: Determination of the critical end point in K-β plane June 6, 2012

Under the change from β0 to β, w(P ;β,κ) and Veff(P ;β,κ) have the following properties:

w(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ), (9)

Z(β,κ) =

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ), (10)

H(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ)

Z(β,κ)

= e6 (β−β0)NV P Z(β0,κ)

Z(β,κ)
H(P ;β0,κ), (11)

Z(β,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

H(P ′;β0,κ), (12)

− ln

(

H(P ;β,κ)

)

= Veff(P ;β,κ) + ln

(

Z(β,κ)

)

= Veff(P ;β0,κ) + ln

(

Z(β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

= − ln

(

H(P ;β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

, (13)

−

d ln

(

H(P ;β,κ)

)

d P
=

d Veff(P ;β,κ)

d P
=

d Veff(P ;β0,κ)

d P
− 6 (β − β0)NV

= −

d ln

(

H(P ;β0,κ)

)

d P
− 6 (β − β0)NV , (14)

Veff(P ;β,κ) = Veff(P ;β0,κ) − 6 (β − β0)NV P, (15)

dVeff(P ;β,κ)

dP
=

dVeff(P ;β0,κ)

dP
− 6 (β − β0)NV . (16)

In Fig. 1, some exapmples are shown, where the plaquette histogram is represented in red, the effective
potential in green, and dVeff/dP in blue. As seen from Fig. 1(a), if only the single peak is present in the
histogram, the potential is single well and its derivative wrt P is monotonically increasing, while, with the
double peak, the potential have double well and its derivative takes “S”-shape.
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Figure 1: Example of (a) single peak and (b) double peak in histogram.

In the analysis, we
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3 Histogram method

3.1 Histogram method for plaquette

With our strategy explained in the previous sections, it is crucial to find where the first order phase transition
ends. To this purpose, we adopt a well established method, called histogram method, following Ref. [2]

First define the probability distribution function by

w(P ′;β,κ) =

∫

DUDψDψ̄ δ(P ′ − P [U ]) e−Sf−Sg

=

∫

DUDψDψ̄ δ(P ′ − P [U ])
[

det M(κ)
]NF e6βNV P [U ]

= e6βNV P ′

∫

DUDψDψ̄ δ(P ′ − P [U ])
[

detM(κ)
]NF . (1)

where

NV = N3
s × Nt ( the number of sites in four-dimension), (2)

P [U ] =
1

6NV

∑

n

∑

µ<ν

1

3
tr

[

Un,µUn+µ̂,νU
†
n+ν̂,µU †

n,ν

]

, (3)

Sg = −6 NV βP [U ], (4)

Sf =
NF
∑

f=1

∑

n

[

ψ̄f
nψ

f
n − κf

∑

µ

ψ̄f
n

{

(1 − γµ)Un,µψ
f
n+µ̂ + (1 + γµ)U †

n−µ̂,µψ
f
n−µ̂

}

]

=
NF
∑

f=1

∑

n,m

ψ̄f
n Mn,m(κf )ψf

m. (5)

The effective potential Veff(P ;β,κ), the partition function Z(β,κ) and the histogram are given by

Veff(P ′;β,κ) = − ln

(

w(P ′;β,κ)

)

, (6)

Z(β,κ) =

∫

dP ′w(P ′;β,κ) =

∫

dP ′e−Veff(P ′;β,κ), (7)

H(P ′;β,κ) =
w(P ′;β,κ)

Z(β,κ)
, (8)

where H(P ′;β,κ) denotes the histogram.

N. Yamada for Wilson Many Flavor (WMF) Collaboration page 2 / 15

Phase 1: Determination of the critical end point in K-β plane June 6, 2012

3 Histogram method

3.1 Histogram method for plaquette

With our strategy explained in the previous sections, it is crucial to find where the first order phase transition
ends. To this purpose, we adopt a well established method, called histogram method, following Ref. [2]

First define the probability distribution function by

w(P ′;β,κ) =

∫

DUDψDψ̄ δ(P ′ − P [U ]) e−Sf−Sg

=

∫

DUDψDψ̄ δ(P ′ − P [U ])
[

det M(κ)
]NF e6βNV P [U ]

= e6βNV P ′

∫

DUDψDψ̄ δ(P ′ − P [U ])
[

detM(κ)
]NF . (1)

where

NV = N3
s × Nt ( the number of sites in four-dimension), (2)

P [U ] =
1

6NV

∑

n

∑

µ<ν

1

3
tr

[

Un,µUn+µ̂,νU
†
n+ν̂,µU †

n,ν

]

, (3)

Sg = −6 NV βP [U ], (4)

Sf =
NF
∑

f=1

∑

n

[

ψ̄f
nψ

f
n − κf

∑

µ

ψ̄f
n

{

(1 − γµ)Un,µψ
f
n+µ̂ + (1 + γµ)U †

n−µ̂,µψ
f
n−µ̂

}

]

=
NF
∑

f=1

∑

n,m

ψ̄f
n Mn,m(κf )ψf

m. (5)

The effective potential Veff(P ;β,κ), the partition function Z(β,κ) and the histogram are given by

Veff(P ′;β,κ) = − ln

(

w(P ′;β,κ)

)

, (6)

Z(β,κ) =

∫

dP ′w(P ′;β,κ) =

∫

dP ′e−Veff(P ′;β,κ), (7)

H(P ′;β,κ) =
w(P ′;β,κ)

Z(β,κ)
, (8)

where H(P ′;β,κ) denotes the histogram.

N. Yamada for Wilson Many Flavor (WMF) Collaboration page 2 / 15

Phase 1: Determination of the critical end point in K-β plane June 6, 2012

Under the change from β0 to β, w(P ;β,κ) and Veff(P ;β,κ) have the following properties:

w(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ), (9)

Z(β,κ) =

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ), (10)

H(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ)

Z(β,κ)

= e6 (β−β0)NV P Z(β0,κ)

Z(β,κ)
H(P ;β0,κ), (11)

Z(β,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

H(P ′;β0,κ), (12)

− ln

(

H(P ;β,κ)

)

= Veff(P ;β,κ) + ln

(

Z(β,κ)

)

= Veff(P ;β0,κ) + ln

(

Z(β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

= − ln

(

H(P ;β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

, (13)

−

d ln

(

H(P ;β,κ)

)

d P
=

d Veff(P ;β,κ)

d P
=

d Veff(P ;β0,κ)

d P
− 6 (β − β0)NV

= −

d ln

(

H(P ;β0,κ)

)

d P
− 6 (β − β0)NV , (14)

Veff(P ;β,κ) = Veff(P ;β0,κ) − 6 (β − β0)NV P, (15)

dVeff(P ;β,κ)

dP
=

dVeff(P ;β0,κ)

dP
− 6 (β − β0)NV . (16)

In Fig. 1, some exapmples are shown, where the plaquette histogram is represented in red, the effective
potential in green, and dVeff/dP in blue. As seen from Fig. 1(a), if only the single peak is present in the
histogram, the potential is single well and its derivative wrt P is monotonically increasing, while, with the
double peak, the potential have double well and its derivative takes “S”-shape.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 1  1.5  2  2.5  3  3.5
P

Example 0

histogram
V_eff

dV_eff/dP

-1

-0.5

 0

 0.5

 1

 1.5

 2

 1  1.5  2  2.5  3  3.5
P

Example 1

histogram
V_eff

dV_eff/dP

(a) (b)

Figure 1: Example of (a) single peak and (b) double peak in histogram.

In the analysis, we
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Figure 5: V/a4 = 84.
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Phase 1: Determination of the critical end point in K-β plane June 6, 2012

-8000

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 0.4  0.42 0.44 0.46 0.48  0.5  0.52 0.54 0.56 0.58  0.6

dV
ef

f/d
P

P

L=8, nf=6

k=0.158
k=0.155
k=0.152

-10000

-5000

 0

 5000

 10000

 15000

 0.4  0.42 0.44 0.46 0.48  0.5  0.52 0.54 0.56 0.58  0.6

dV
ef

f/d
P

P

L=8, nf=7

k=0.155
k=0.152
k=0.150

-12000

-10000

-8000

-6000

-4000

-2000

 0

 2000

 4000

 0.4  0.42 0.44 0.46 0.48  0.5  0.52 0.54 0.56 0.58  0.6

dV
ef

f/d
P

P

L=8, nf=8

k=0.155
k=0.152

-10000
-8000
-6000
-4000
-2000

 0
 2000
 4000
 6000
 8000

 0.4  0.42 0.44 0.46 0.48  0.5  0.52 0.54 0.56 0.58  0.6

dV
ef

f/d
P

P

L=8, nf=9

k=0.155
k=0.152
k=0.150

-8000

-6000

-4000

-2000

 0

 2000

 4000

 6000

 0.4  0.42 0.44 0.46 0.48  0.5  0.52 0.54 0.56 0.58  0.6

dV
ef

f/d
P

P

L=8, nf=10

k=0.152
k=0.150

Figure 6: dVeff/dP at V/a4 = 84.
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From dVeff /dP, βcp at each K can be determined.

Finding Critical Endpoint:Histogram Method and Re-weighting
Saito et al, [WHOT-QCD], PRD84, 054502 (2011); S. Ejiri, Phys. Rev. D 77, 014508 (2008)



NT dependence of βcp
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Figure 11: Wilson phase diagram from plaquette for NF = 4, 6, 10 (top)
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• Endpoint moves to the right for 
NF =4.
• The direction of the shift is 

unclear for NF =6 and 10.
Large NT data necessary

Phase 1: Determination of the critical end point in K-β plane June 24, 2012
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Possible interpretation

•The endpoint moving to the right:
The 1st order chiral transition may 
persist in the continuum limit.
Theory is confining and consistent 
with Pisarski & Wilczek.

•The endpoint not moving to the 
right:
Two possibilities in the continuum 
limit:
1. Theory is confining, but no 1st order 

region, inconsistent with P & W.
2. Chiral transition does not occur. 

Theory is conformal.

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.
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Summary

✓Establishing Columbia plot for Many Flavor QCD 
clarifies phenomenologically interesting region.

✓We employ Wilson fermion to study the 
thermodynamical properties of Many Flavor QCD 
by scanning the β-K plane.

✓Method tracing the critical endpoint looks feasible.
✓Method may be used to fix the conformal window.
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Spectrum in Conformal Window

•In the massless limit, everything including σ vanish.
➡Dynamical scale Λ vanishes in contrast to QCD.
•Like confining except for the small mass region.
•Lattice calc. seems to reproduce the expected spectrum.
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FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣

∣

∣

∣

FX(x) −AX

AX

∣

∣

∣

∣

< ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.
Consider now the square root of the fundamental string tension Mσ =

√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣

∣

∣

∣

MPS

Mσ
−

APS

Aσ

∣

∣

∣

∣

< O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.
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Del Debbio et al.,PRD80, 074507 (2009)

string tension keeps decreasing as the fermion mass is
decreased. A nonzero string tension is expected in the
massive case even in the conformal window, since a non-
zero quark mass moves the theory away from the attraction
basin of the IR fixed point. What is remarkable is that even
at our lowest PCAC masses there is a well-defined hier-
archy in the spectrum: the string tension defines the lowest
mass scale in the system, and the meson spectrum is well
above the lowest-lying glueballs. At this stage, it is worth
noticing that states with mass of the order or above a!1 are
expected to be significantly affected by discretization arti-
facts; while we can reach small masses for the mesons, the
extraction of the gluonic spectrum becomes very expensive
for light fermions. As a consequence we do not have results
for the glueballs and the string tension at the smaller values
of the mass. Despite the fact that a significant portion of
our spectrum falls in the region where discretization arti-
facts are not under control, the hierarchy of the spectrum
seems to be a robust conclusion, as it can be extrapolated
smoothly to the region where discretization errors are
expected to be under control. To investigate in more detail
the observed hierarchy of scales, we plot in Fig. 2 the ratio
mPS=

ffiffiffiffi
!

p
as a function of the pseudoscalar mass in lattice

units. For a standard confining and chiral symmetry break-
ing theory, this ratio goes to zero in the chiral limit. For our
theory, even when varying the pseudoscalar mass by a
factor of 6 to a region where it is well below the cutoff
scale, this ratio is always of order 10, and does not ex-
trapolate to zero in the chiral limit. This behavior is at odds
with the one expected for QCD, and indeed it is not
observed in QCD simulations for similar variations of the

pseudoscalar mass. Fermion loops seem to strongly affect
the gluonic sector, keeping the corresponding scale always
well below the scale of mesonic physics.
IR effective dynamics.— The vector meson is not dis-

played in Fig. 1, since it is degenerate with the pseudosca-
lar meson on the scale of the plot (the approximate
degeneracy of the pseudoscalar and vector mesons was
already observed in previous simulations, starting from
Ref. [17]). Having a better control on the massless limit
allows us to investigate more closely the degeneracy be-
tween the pseudoscalar and the vector meson observed in
previous studies. Our data in Fig. 3 show that, as the
fermion mass is reduced, the ratio mV=mPS progressively
rises from 1 (which is the expected result in the heavy
quark effective theory) to 1.04, where it seems to stabilize.
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FIG. 2 (color online). Pseudoscalar mass in units of
ffiffiffiffi
!

p
as a

function of the pseudoscalar mass in units of a!1. Points on the
left of the vertical line at aM ¼ 1 are expected to be reasonably
free from finite lattice spacing effects.
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FIG. 1 (color online). Comparative plot of the various observ-
ables as a function of mPCAC. The lines at high PCAC mass show
the quenched behavior of the various observables. The horizontal
line at aM ¼ 1 visually shows the separation between values of
masses that are affected by lattice artifacts (aM > 1) and values
for which the states are below the ultraviolet cutoff (aM < 1).
Although ideally one wants all the states of interest to be free
from lattice artifacts, due to the big separation of the scales, this
condition is difficult to accommodate in practice.
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FIG. 3 (color online). The ratio of the vector mass mV over the
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shown.
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Figure 12: Wilson phase diagram from analysis of Polyakov line.
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βc from Polyakov loop



Comparison of Plaq. and Polyakov

• Two lines are on top of each 
other in the 1st order region.
• In the other region, they 

deviate.
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Figure 13: Comparison of the transition line for different NF .
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Figure 14: Comparison of βc from analysis of plaquette and Polyakov line.
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If this is the case, 
EW baryogenesis within TC 
seems difficult.
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If this is the case, not 
interesting.
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Critical Beta in the quenched approximation

Iwasaki, et al., PRD46(1992)4657:
βc(Nt=4,K=0)=5.69254(24)
βc(Nt=6,K=0)=5.89405(51)

Boyd, et al., NPB469(1996) 419:
βc(Nt= 4,K=0) = 5.6925 (2)
βc(Nt= 6,K=0) = 5.8941 (5)
βc(Nt= 8,K=0) = 6.0625
βc(Nt=12,K=0) = 6.3384


