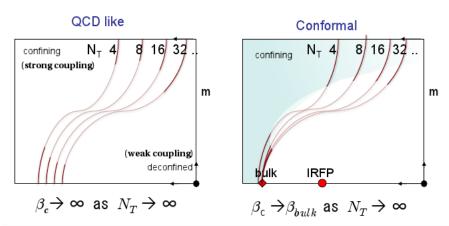
Bulk and finite-temperature transitions in SU(3) gauge theories with many light fermions

David Schaich (University of Colorado)

Lattice 2012, Cairns, Australia 25 June 2012

PRD **85**:094509 (2012) [arXiv:1111.2317**v2**] and work in progress with Anqi Cheng, Anna Hasenfratz and Greg Petropolous

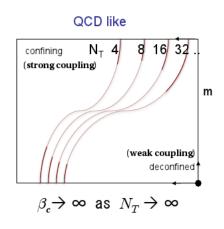
Motivation for studying finite-temperature transitions

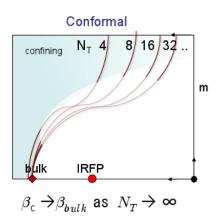


Hope for contrast between confining vs. IR-conformal systems

Previous work: Groningen–INFN; Lattice Higgs Collaboration \longrightarrow Explore with action that showed $N_F = 12$ IR fixed point via MCRG (For more on MCRG: Greg Petropoulos, Thursday 14:30)

Motivation for studying finite-temperature transitions

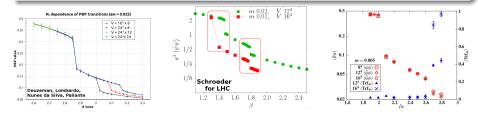




- nHYP smeared action with adjoint plaquette term $\beta_A = -0.25\beta_F$
- $N_F = 8$ and 12 staggered fermions in fundamental rep.
- T > 0 volumes up to $40^3 \times 20$, as well T = 0 up to $32^3 \times 64$ (large-volume runs still in progress \longrightarrow results preliminary)

For $N_F = 12$ we observe **two** bulk transitions

Strange behavior in $\langle \overline{\psi} \psi \rangle$ observed using three staggered actions



Our observations (may not yet be consensus)

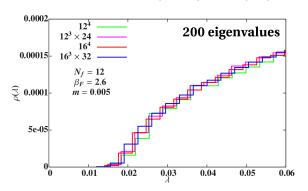
- Large jump in $\langle \overline{\psi}\psi \rangle$ at stronger coupling
- Large jump in RG-blocked Polyakov loop at weaker coupling

Suggest a confined but chirally symmetric phase

Study through low-lying eigenvalues, and new order parameters... (and spectrum and static potential, omitted from this talk)

Eigenvalue density $\rho(\lambda)$ in intermediate phase

Good observable for exploring chiral properties



$$\left\langle \overline{\psi}\psi \right
angle \propto m \int rac{
ho(\lambda) \mathrm{d}\lambda}{\lambda^2 + \mathit{m}^2}$$

$$\omega \equiv \chi_P - \chi_S$$

$$= 4m^2 \int \frac{\rho(\lambda)d\lambda}{(\lambda^2 + m^2)^2}$$

"Soft edge":
$$\lim_{V\to\infty}\rho(\lambda)\propto (\lambda-\lambda_0)^{\alpha}$$
 with $\lambda_0>0$

 $(\alpha \approx 0.5)$

Gap in infinite-volume extrapolation of eigenvalue density

$$\Longrightarrow \left\langle \overline{\psi}\psi \right
angle =$$
 0 and $\chi_{\mathcal{S}}=\chi_{P}$ (axial U(1)_A restored) in chiral limit

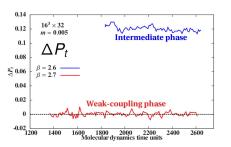
(For more on eigenvalues at weak coupling: A. Hasenfratz, Tuesday 14:50)

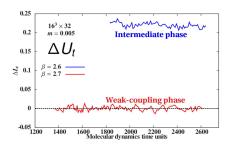
Novel behavior: single-site shift symmetry breaking

Order parameters: differences of plaquettes \square or links $\overline{\chi}U\chi$

$$\Delta P_{\mu} = \langle \text{ReTr } \square_{n,\mu} - \text{ReTr } \square_{n+\mu,\mu} \rangle_{n_{\mu} \text{ even}}$$

$$\Delta U_{\mu} = \langle \alpha_{\mu,n}\overline{\chi}_{n}U_{\mu,n}\chi_{n+\mu} - \alpha_{\mu,n+\mu}\overline{\chi}_{n+\mu}U_{\mu,n+\mu}\chi_{n+2\mu} \rangle_{n_{\mu} \text{ even}}$$



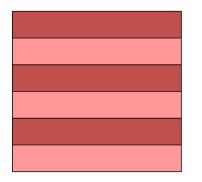


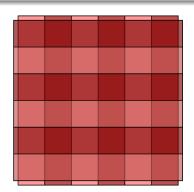
Single-site shift symmetry of staggered action spontaneously broken in intermediate phase ("\$\mathcal{S}^{4}")

Consequences of shift symmetry breaking

Observables alternate between slices

Breaking can develop in one or more directions Breaking can change direction(s) during HMC evolution



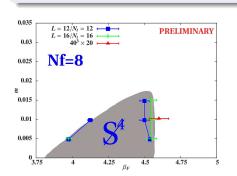


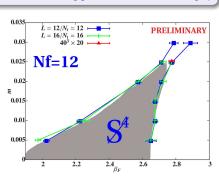
Present in plaquette ⇒ feature of gauge configurations themselves

Implications of S^4 lattice phase

S4 phase seems to have no continuum limit

- Confining but chirally symmetric (forbidden by anomaly matching)
- Bounded by first-order bulk transitions (merge as *m* increases)
- Observed for both $N_F = 8$ and 12 (Potential Aoki-like phase? Relation to staggered taste breaking?)





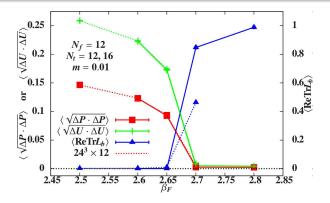
How do finite-temperature transitions behave around bulk transitions?

Finite-temperature transitions around the S4 phase

 $N_F = 12$, m = 0.01, $24^3 \times 12$ and $32^3 \times 16$

 \mathcal{S}^4 order parameters fall to zero at the same time as the RG-blocked Polyakov loop becomes large (compared to $N_F=2+1$ deconfinement transition)

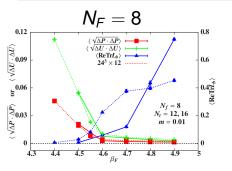
 \implies At m = 0.01, move from \mathcal{S}^4 phase into deconfined phase

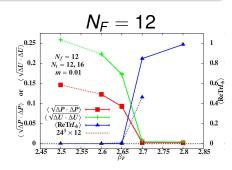


Finite-temperature transitions around the S4 phase

$$N_F = 8$$
, $m = 0.01$, $24^3 \times 12$ and $32^3 \times 16$
Rise in RG-blocked Polyakov loop depends on N_T , not simultaneous with fall in S^4 order parameters

 \implies At m = 0.01, move from \mathcal{S}^4 phase into confined phase; Deconfinement transition moves with N_T

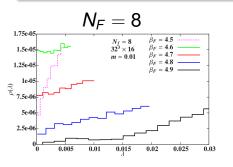


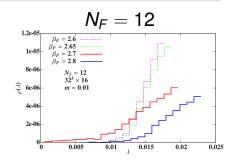


Eigenvalue density $\rho(\lambda)$ around the \mathcal{S}^4 phase

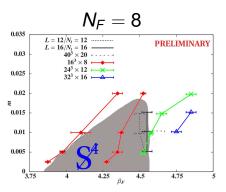
$$N_F = 8$$
 and 12, $m = 0.01$, $32^3 \times 16$

- Soft edge appears both in \$\mathcal{S}^4\$ phase and at high temperature
- For $N_F = 12$, we move straight from \mathcal{S}^4 phase to chiral symmetry
- For $N_F=8$, we observe a chirally broken phase in between the \mathcal{S}^4 phase and chiral symmetry restoration

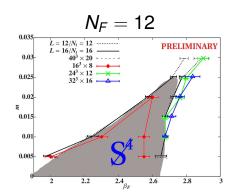




Resulting $N_F = 8$ and 12 phase diagrams



T > 0 transitions pass through S^4 bulk transition $N_T = 12$, 16 move to weaker β

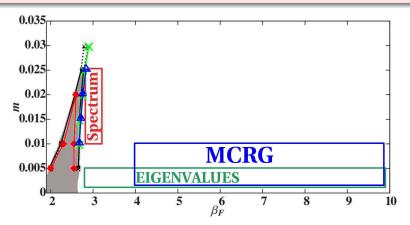


T>0 transitions congregate at \mathcal{S}^4 bulk transition $N_T=12$, 16 indistinguishable

Finite-temperature analysis appears feasible despite novel S^4 phase

Outlook

Complementing finite-temperature studies with MCRG,
Dirac eigenvalues and meson spectrum analyses



Eigenvalues: Anna Hasenfratz, Tuesday 14:50 MCRG: Greg Petropoulos, Thursday 14:30

Thank you!

Thank you!

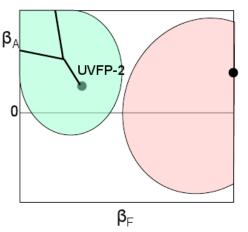
Collaborators

Anqi Cheng, Anna Hasenfratz, Greg Petropolous

Funding and computing resources

Backup: spurious UV fixed point from lattice artifacts

We add a negative adjoint plaquette term to the gauge action $(\beta_A=-0.25\beta_F)$ to avoid a well-known spurious UV fixed point



(A. Hasenfratz)

Gaussian FP

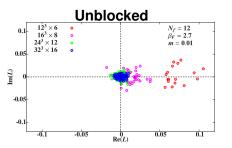
Between the basins of attraction is a no-man's land

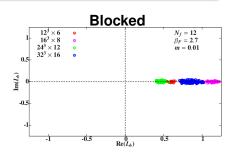
Backup: Blocked Polyakov loop

RG-blocked observables enhance signals over noise

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

Example below: Polyakov loop for $N_F = 12$, $\beta_F = 2.7$, m = 0.01





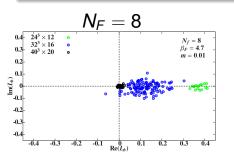
Note different volumes permit different numbers of blocking steps

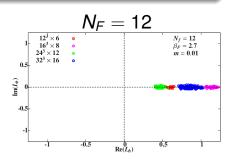
Backup: Blocked Polyakov loop

RG-blocked observables preserve existing signals

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

RG-blocked Polyakov loop can still indicate transition





As for other observables, qualitative difference between $N_F=8$ and 12

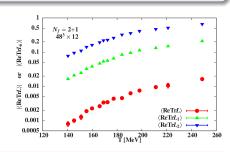
Backup: Blocked Polyakov loop

RG-blocked observables checked for $N_F = 2+1$

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

Behave as expected for finite-temperature lattice QCD





Thanks!

Tested on 48³ × 12 configurations provided by HotQCD Collaboration

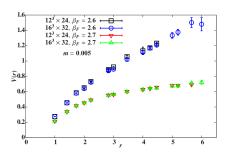
Backup: S^4 phase is confining but chirally symmetric

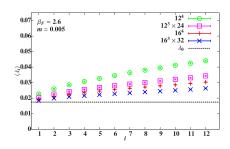
Confinement:

- RG-blocked Polyakov loop is small
- Potential has clear linear term, small Sommer parameter $r_0 \approx 3$

Chiral symmetry:

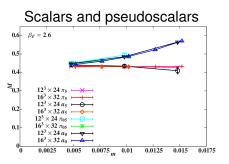
- Meson spectrum is parity-doubled and volume-independent
- Dirac eigenvalue distribution has "soft edge" $\lambda_0 = 0.0175(5)$

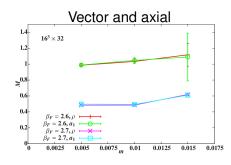




Backup: parity doubling in the S⁴ meson spectrum

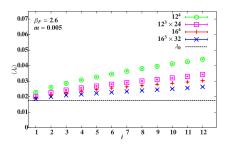
In the \mathcal{S}^4 phase, meson spectrum is parity-doubled and volume-independent Goldstone pion possesses a scalar parity partner " a_5 " (forbidden in QCD-like systems)

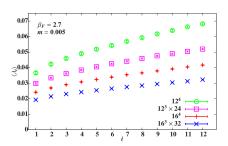




Backup: Volume scaling of Dirac eigenvalues

phase soft edge visible in eigenvalues themselves (left)
Contrast with weak-coupling phase (right)

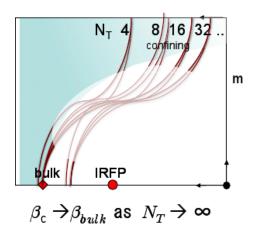




$$\lim_{V\to\infty} \rho(\lambda) \propto (\lambda-\lambda_0)^{\alpha}$$

 $\lambda_0=0.0175(5)>0$ is soft edge

Backup: Cartoon of phase diagram including S^4 phase



Staggered single-site shift symmetry:

$$\chi(n) \to \xi_{\mu}(n)\chi(n+\mu)$$
 $\xi_{\mu}(n) \equiv (-1)^{\sum_{\nu>\mu} n_{\nu}}$ $\overline{\chi}(n) \to \xi_{\mu}(n)\overline{\chi}(n+\mu)$ $U_{\mu}(n) \to U_{\mu}(n+\mu)$