QCD with colour-sextet quarks

D. K. Sinclair and J. B. Kogut

- Introduction
- QCD with colour-sextet quarks at finite temperature
- ullet The chiral transition for $N_f=2$
- ullet The chiral transition for $N_f=3$
- Discussion and conclusions

Introduction

We are interested in extensions of the standard model with a composite/strongly-interacting Higgs sector.

Technicolor theories – QCD-like theories with massless techniquarks where the techni-pions play the rôle of the Higgs field, giving masses to the W and Z – show the most promise.

It is difficult to suppress flavour-changing neutral currents in extended Technicolor while giving large enough masses to the fermions. Technicolor theories which are simply scaled-up QCD fail the precision electroweak tests.

Walking Technicolor theories, where the fermion content of the gauge theory is such that the running coupling constant evolves very slowly over a considerable range of length/energy-momentum scales, can potentially avoid these problems.

QCD with $1\frac{28}{125} \leq N_f < 3\frac{3}{10}$ flavours of massless colour-sextet quarks is expected to be either a Walking or a Conformal field theory. (First term in the β function is negative, second positive.)

The $N_f = 3$ theory is presumably conformal.

The $N_f = 2$ theory could be either Walking or Conformal. In addition, if walking, it is minimal, having just the right number of Goldstone bosons (3) to give masses to the W and Z.

We simulate the $N_f = 2$ theory to see if it walks. We also study the $N_f = 3$ theory for comparison.

We simulate these theories at finite temperature, using the evolution of the lattice bare coupling at the chiral transition with N_t to determine if it is governed by asymptotic freedom – walking – or if it approaches a non-zero constant (bulk transition) – conformal.

The deconfinement transition occurs at appreciably smaller β (stronger coupling), and it is unlikely to give useful information on QCD-like versus conformal behaviour at the N_t values we use.

We simulate the $N_f = 2$ theory on lattices with $N_t = 4, 6, 8, 12$ and hope to extend this to larger N_t .

Preliminary results indicate that $\beta_{\chi}(N_t = 12)$ is significantly larger than $\beta_{\chi}(N_t = 8)$, but by less than what the 2-loop β -function would predict.

We are also performing preliminary runs with β fixed at a value above $\beta_{\chi}(N_t = 12)$ on lattices with fixed N_s varying N_t , keeping $N_t \leq N_s$ (we thank Julius Kuti for suggesting this). Here we look for the transition to the chirally restored state as N_t increases.

We simulate the $N_f = 3$ theory on lattices with $N_t = 4, 6, 8$ and hope to extend this to $N_t = 12$.

Preliminary results indicate that $\beta_{\chi}(N_t = 8)$ is probably significantly greater than $\beta_{\chi}(N_t = 6)$ which would indicate that we are not yet at weak enough coupling.

QCD with colour-sextet staggered quarks at finite T

We use the simplest (Wilson) gauge action:

$$S_g = \beta \sum \Box \left[1 - \frac{1}{3} \operatorname{Re}(\operatorname{Tr} U U U U) \right].$$
 (1)

Formally, the unimproved staggered quark action action is:

$$\boldsymbol{S_f} = \sum_{sites} \left[\sum_{f=1}^{N_f/4} \psi_f^{\dagger} [\boldsymbol{D} + \boldsymbol{m}] \psi_f \right], \qquad (2)$$

where where $D = \sum_{\mu} \eta_{\mu} D_{\mu}$ with

$$D_{\mu}\psi(x) = \frac{1}{2} [U_{\mu}^{(6)}(x)\psi(x+\hat{\mu}) - U_{\mu}^{(6)\dagger}(x-\hat{\mu})\psi(x-\hat{\mu})]. \quad (3)$$

We use the RHMC algorithm to simulate values of $N_f/4$ which are not integers, in particular $N_f = 2, 3$.

Simulations near the chiral transition for $N_f = 2$

We are simulating lattice QCD with 2 colour-sextet quarks near the chiral transitions for lattices with $N_t = 8$ and $N_t = 12$, to accurately determine β_{χ} , the value of β at this transition.

Two loop perturbation theory predicts that

$$eta_\chi(N_t=12)-eta_\chi(N_t=8)pprox 0.12$$

We look for evidence that $eta_\chi(N_t)$ approaches zero as $N_t o \infty$.

The peak in the (disconnected) chiral susceptibility

$$\chi_{ar{\psi}\psi} = rac{V}{T} ig[\langle (ar{\psi}\psi)^2
angle - (\langle ar{\psi}\psi
angle)^2 ig]$$

extrapolated to m = 0, gives the estimate of the position of the chiral transition.

 $N_t = 8$

We have completed our simulations on $16^3 \times 8$ lattices in the neighbourhood of the chiral transition. Our quark masses are m = 0.0025, m = 0.005, m = 0.01, m = 0.02. In the range $6.6 \leq \beta \leq 6.8$ we simulate at β s spaced by 0.02. At each β in this range we ran for 50,000 length-1 trajectories for each mass at m = 0.005, 0.01, 0.02 and for 100,000 trajectories at m = 0.0025.

Figure 1 shows the unrenormalized chiral condensates for these runs.

Figure 2 shows the unrenormalized chiral condensates and the subtracted chiral condensates (following Fodor $et \ al.$), for the lowest 2 masses. The subtracted chiral condensate

$$\langle ar{\psi}\psi
angle_{sub} = \langle ar{\psi}\psi
angle - \left(m_V rac{\partial}{\partial m_V} \langle ar{\psi}\psi
angle
ight)_{m_V=m_V}$$

removes (most of) the leading UV divergence from $\langle \bar{\psi} \psi \rangle$. Figure 3 shows the chiral susceptibilities from these runs.

$16^3 \times 8$ lattice 1.5 \times - m=0.02 $\diamond - m=0.01$ # - m = 0.005⋇ -m=0.0025ITI 1.0 \star $\langle \overline{\psi} \psi angle$ × × × × ★ 0.5 ↔ ** ⋇ \Leftrightarrow $\frac{NZ}{ZN}$ ÷ $\frac{NZ}{ZN}$ $\frac{NZ}{ZN}$ ÷ $\frac{NZ}{ZN}$ 0.0 6.8 7.0 7.2 7.46.6

Figure 1: Chiral condensates on a $16^3 \times 8$ lattice.

β

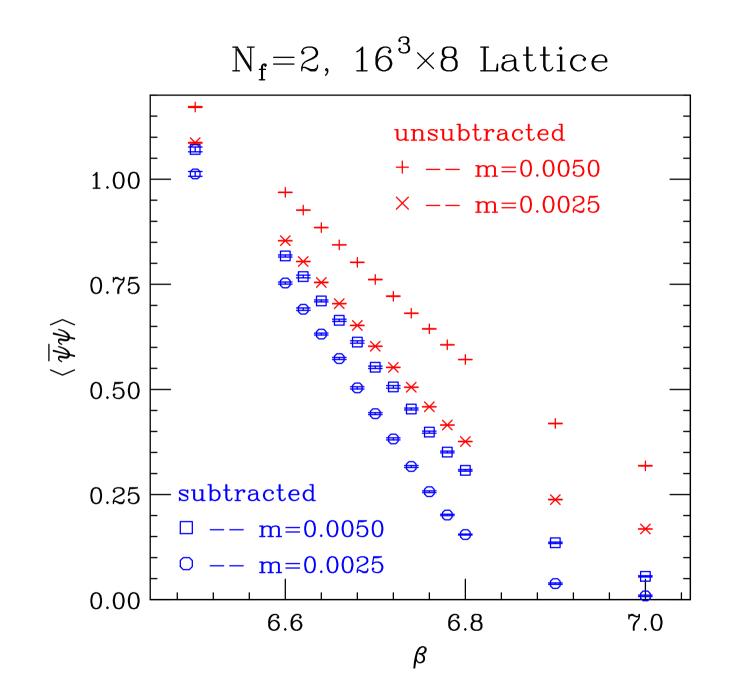


Figure 2: Chiral condensates and subtracted chiral condensates on a $16^3 \times 8$ lattice.

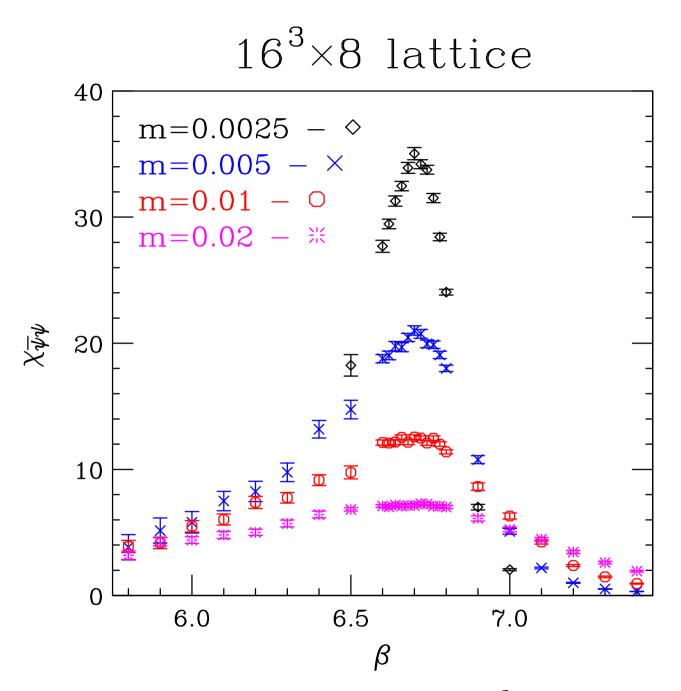


Figure 3: Chiral susceptibilities on a $16^3 \times 8$ lattice.

While the behaviour of the chiral condensate (figure 1) strongly suggests that it vanishes in the chiral limit for β sufficiently large, it would be difficult, if not impossible, to make a precise estimate of β_{χ} from these graphs.

The subtracted chiral condensate (figure 2) enhances the vanishing of the chiral condensate in the chiral limit, but is still inadequate for estimating β_{χ} .

The chiral susceptibility, which should diverge at β_{χ} , in the chiral limit shows clear peaks for m = 0.005 and m = 0.0025. The height of the peaks grows as m is decreased. In addition, we note that the position of the peaks does not change as m is decreased from 0.005 to 0.0025. Hence the position of the peak at m = 0.0025 should be a good estimate of β_{χ} .

Ferrenberg-Swendsen reweighting from the chiral susceptibilities at $\beta = 6.68$ and $\beta = 6.70$ for mass m = 0.0025 yields $\beta_{peak} = 6.690(5)$. We therefore estimate that $\beta_{\chi} = 6.69(1)$.

$N_t = 12$

We are performing simulations on $24^3 \times 12$ lattices at m = 0.0025, m = 0.005, m = 0.01. For $6.6 \le \beta \le 6.9$ we are performing simulations at β s spaced by 0.02. Outside this range our β s are spaced by 0.1. The preliminary results presented here represent 10,000–25,000 trajectories for each (β, m) , except at m = 0.005, $\beta = 6.6$ where we have 42,750 trajectories.

Figure 4 shows the unrenormalized chiral condensates for these runs.

Figure 5 shows the unrenormalized chiral condensates and the subtracted chiral condensates for the lowest mass.

Figure 6 shows the chiral susceptibilities from these runs.



Figure 4: Chiral condensates on a $24^3 \times 12$ lattice.

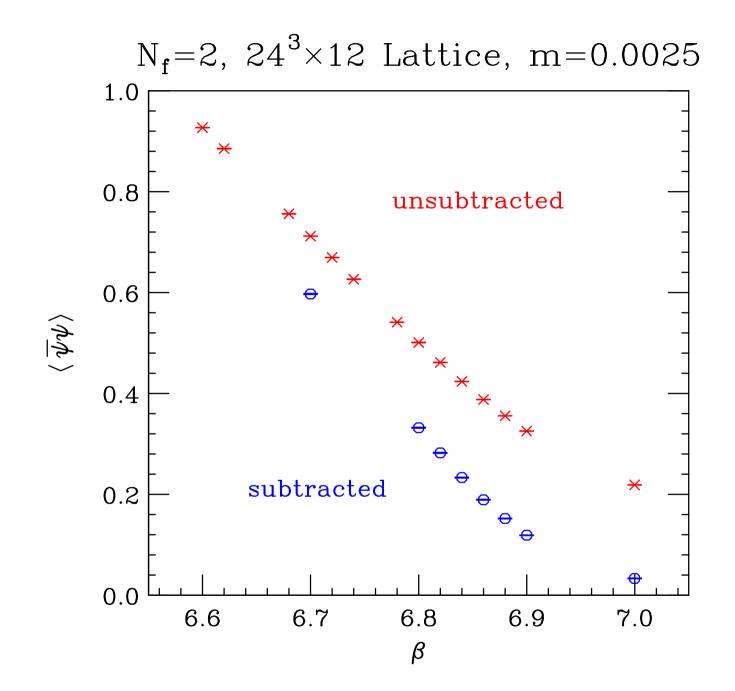


Figure 5: Chiral condensates and subtracted chiral condensates on a $24^3 \times 12$ lattice at m = 0.0025.

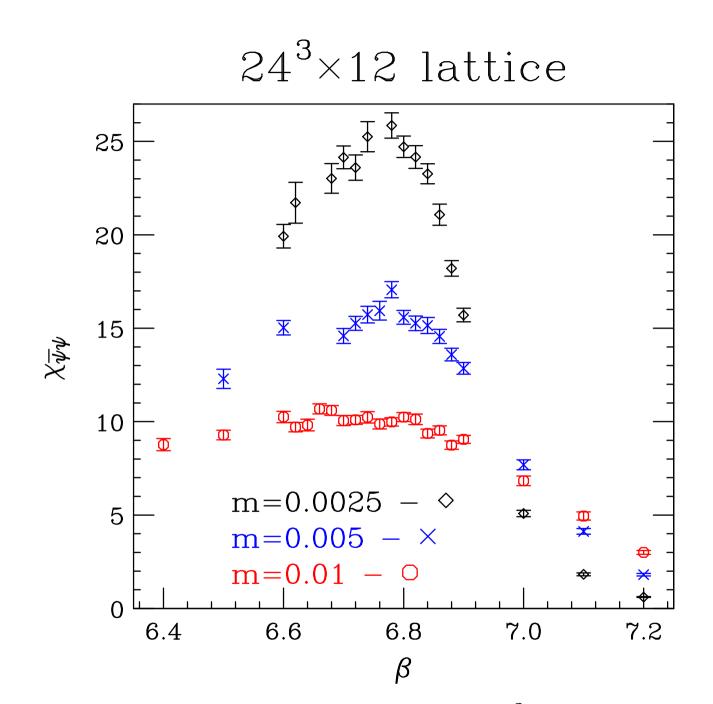


Figure 6: Chiral susceptibilities on a $24^3 \times 12$ lattice.

As for $N_t = 8$, the chiral condensates both unsubtracted and subtracted, strongly suggest that there is some $\beta = \beta_{\chi}$ above which the chiral condensate vanishes in the chiral limit. However, at the masses we use, it would be difficult if not impossible to extract β_{χ} from either of these condensates.

The peaking of the chiral susceptibility (figure 6) promises to allow us to estimate β_{χ} with some precision. However, more statistics are needed.

A rough estimate of β_{χ} from the present 'data' yields $\beta_{\chi} \approx 6.78$. This means that

$$eta_{\chi}(N_t=12)-eta_{\chi}(N_t=8)pprox 0.09$$

compared with the 0.12 from 2-loop perturbation theory.

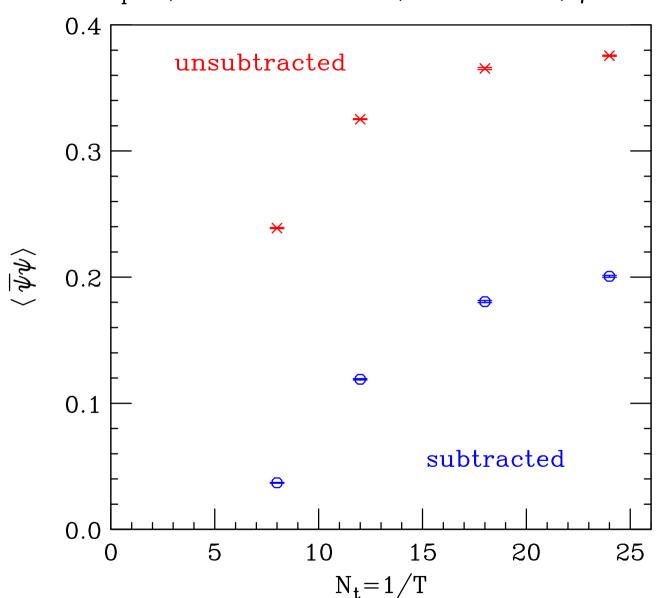
$24^3 imes N_t$

We simulate this 2-flavour theory on $24^3 \times N_t$ lattices with $N_t \leq 24$ at fixed β , to search for evidence of a transition back to the chirally broken phase as N_t is increased.

We choose $\beta = 6.9$. If the evolution of β_{χ} is governed by the 2-loop β -function, $\beta_{\chi} \approx 6.9$ for $N_t = 18$. Hence we should see evidence for the chiral transition as N_t is increased.

At present, we have fixed the quark mass at m = 0.0025, and are running on $24^3 \times 8$, $24^3 \times 12$, $24^3 \times 18$ and 24^4 lattices.

Figure 7 shows the unsubtracted and subtracted chiral condensates as functions of N_t for these runs.



 $N_f=2, 24^3 \times 12$ Lattice, m=0.0025, $\beta=6.9$

Figure 7: Chiral condensates on a $24^3 \times N_t$ lattices at $\beta = 6.9$ and m = 0.0025.

While this appears promising as evidence for there being a transition back to a chirally broken phase in the chiral limit, we clearly need more masses to make it convincing.

Simulations near the chiral transition for $N_f = 3$

We are extending our simulations with 3 flavours of sextet quarks to $N_t = 8$ lattices. Our simulations are performed on $16^3 \times 8$ lattices with m = 0.005 and m = 0.01.

2-loop evolution of the lattice(bare) coupling would predict

 $\beta_{\chi}(N_t = 8) - \beta_{\chi}(N_t = 6) \approx 0.0025,$

which would be indistinguishable from zero at our expected resolution. Hence we will be unable to distinguish a finite temperature from a bulk transition.

However, we should be able to tell if we are yet in the asymptotic regime, by observing if there is any appreciable shift in β_{χ} between $N_t = 6$ and $N_t = 8$.

Figure 8 shows preliminary results for the chiral susceptibilities for $N_f = 3$ on a $16^3 \times 8$ lattice. Each point represents 10,000–20,000 trajectories.

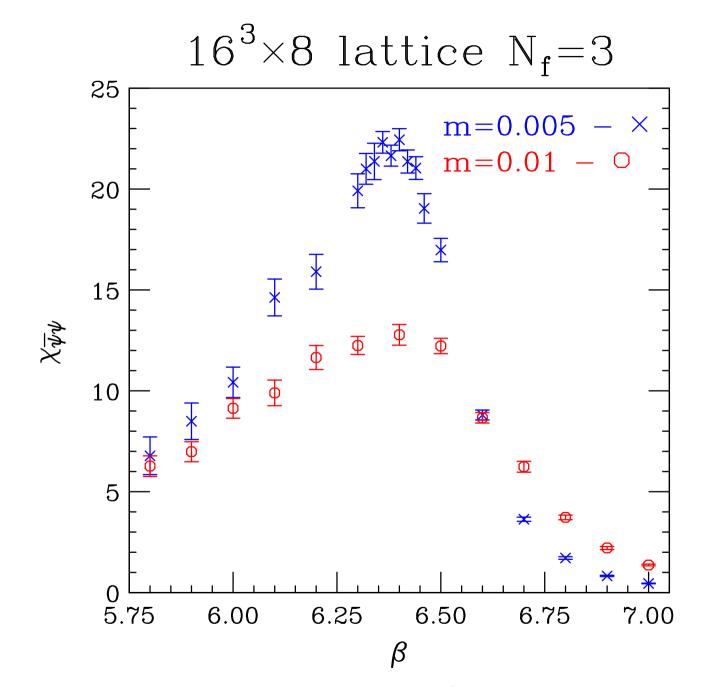


Figure 8: Chiral susceptibilities on a $16^3 \times 8$ lattice for $N_f = 3$.

Clearly we need more statistics to determine the position of the peak with any accuracy.

A rough estimate of the position of the peaks yields $\beta_{\chi} \approx 6.38$.

Both the chiral susceptibility and the condensates themselves indicate that there is an appreciable shift in β_{χ} between $N_t = 6$ and $N_t = 8$. This indicates that we have yet to enter the weak-coupling regime where there should be no discernible shift.

Discussion and Conclusions

- We simulate the thermodynamics of QCD with 2 colour-sextet quarks on lattices with $N_t = 4, 6, 8, 12$ in the neighbourhood of the chiral transition. If chiral-symmetry restoration is a finite-temperature phase transition, measuring β_{χ} as a function of N_t yields the running of the bare lattice coupling β with a at $a = 1/(N_t T_{\chi})$. Asymptotic freedom would imply that $\beta_{\chi} \to \infty$ $(g^2 \to 0)$ as $N_t \to \infty$.
- We present preliminary results indicating that β_{χ} increases with N_t over the range of N_t s considered. This suggests that the theory does walk. However, the change in β_{χ} between $N_t = 8$ and $N_t = 12$ appears to be about 25% smaller than would be predicted from the 2-loop β -function. This is of concern, since this lies in the assumed weak-coupling domain

 $(\beta \gtrsim \beta_{\chi}(N_t = 6))$. If the theory is QCD-like, it suggests that the 2-loop β -function is inadequate to describe the running of the bare coupling for unimproved staggered lattice QCD at these couplings.

- A series of runs performed on $24^3 \times N_t$ lattices for several N_t s $(N_t \leq 24)$ at a fixed (small) quark mass and a fixed coupling intermediate between $\beta_{\chi}(N_t = 12)$ and the expected value of $\beta_{\chi}(N_t = 24)$, does show an increase both the unsubtracted an subtracted chiral condensates consistent with a transition to a chirally broken theory as N_t increases.
- We need more statistics to accurately determine $\beta_{\chi}(N_t = 12)$.
- A more accurate determination of $\beta_{\chi}(N_t = 6)$ is also needed.
- Our $24^3 \times N_t$ runs need to be performed at more masses (and more N_t s).
- The zero temperature properties of this theory need to be studied and the results compared with Fodor *et al* and DeGrand *et al*.
- We are extending our $N_f = 3$ runs to $N_t = 8$. Preliminary results indicate that there is a substantial increase in β_{χ} between $N_t = 6$ and $N_t = 8$. This indicates that this range of N_t s does not lie completely in the weak-coupling domain.

- Other theories we plan to study include $SU(2)_{colour}$ with 3/2 and with 1 colour-adjoint (symmetric) quarks, and $SU(4)_{colour}$ with colour-antisymmetric quarks.
- These simulations were performed on Hopper, Carver and Franklin at NERSC, on Kraken at NICS and on Fusion at the Argonne LCRC.

Appendix

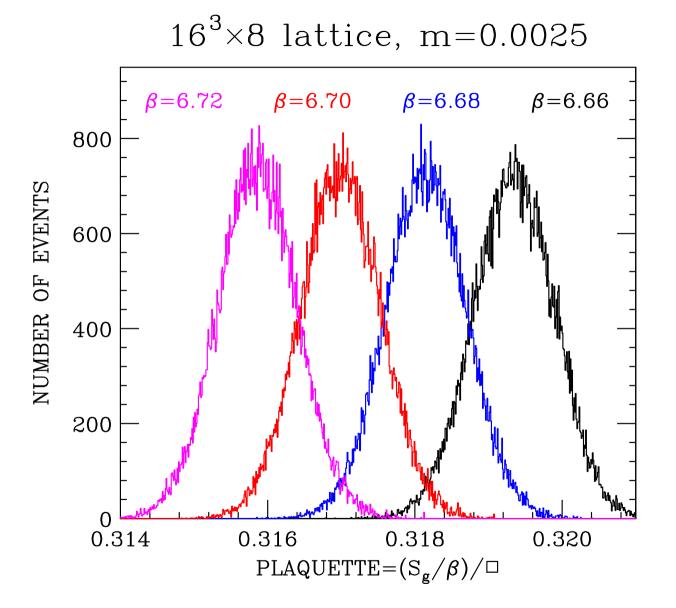


Figure 9: Plaquette distributions near the chiral transition for $N_f = 2$, m = 0.0025 on a $16^3 \times 8$ lattice.