
New fermion discretizations 
and their applications

Tatsu MISUMI   (BNL)     

06/25/2012  Lattice2012@Cairns, AUS



Why New Fermions ?

(2) Improvement of lattice QCD simulations 

(1) Further understanding on lattice field theory  



Lattice fermion improvement 

◆Smeared-link clover (UV filtered, O(a) improved)

◆HISQ (fat-link & O(a ) Symanzik)

◆Twisted-mass (unphysical zero-mode removed, O(a) improved)
DeGrand, Hasenfratz, Kovacs, MILC(98),  BMW’s intensive works  

Follana, et.al.(06), MILC’s intensive works

◆HYP Orginos, Toussaint et.al.(99)Hasenfratz, Knechtli(01) ◆Fat7

Frezzotti, et.al. ALPHA(00),  ETM’s intensive works 

◆Asqtad Lepage (98)

◆Fixed topology (kernel zero-mode removed, locality)

◆Hypercube overlap (perfect kernel→locality, scaling)

Fukaya, et.al. (06), JLQCD intensive works

Bietenholtz, et.al. (99)(12)

Wilson : O(a) errors & bad chiral properties

Staggered : taste breaking at O(a  )

Domain-wall, Overlap : Numerical cost

2

2

etc....

etc....

etc....

◆Reweighting (enlarge 5th size, chiral properties) Hasenfratz et.al.(08), Ishikawa, et.al. (10)



New setups can contribute ?

1. Flavored mass 

2. Central branch

3. Minimal-doubling

Adams (09)          cf.) Golterman, Smit (84)

Staggered overlap  →　CPU time reduction (overlap)?                                                          
                                       Taste symmetry improved (staggered)?

Wilson w/o additive renorm. →   Chiral symmetry (No fine-tuning?)
                                                      O(a) improved?

Kimura, Komatsu,TM, Noumi, Torii, Aoki (11)

Chiral two-flavor w/ ultra locality →  Better chiral property?

Karsten(81) Wilczek(87) Creutz(07) Borici(07)
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1. Flavored mass
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Construction
• Idea # 1: Nf = 4 → 2
Include taste-dependent mass term: ±! for left-/right-handed tastes
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Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0

Ph. de Forcrand QCDNA, Sept. 2010 Overlap staggered fermions

16

�

µ

Cµ

Cµ = (T+µ + T−µ)/2
T±µψn = Un,±µψn±µ



!"##$

%&##$

1 1464

Wilson 

U(4)×U(4)

Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)

2
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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4

Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0,π). These two species are not

equivalent since the gamma matrices are differently defined between them as γ′
µ = Γ−1γµΓ.

In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed

by this action is identified as a flavored one given by γ5 ⊗ τ3. This lattice fermion breaks

discrete rotational symmetry, or hypercubic symmetry. The residual symmetry is spatial

cubic symmetry, corresponding to the permutation of spatial three axes. As a result, it

possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P

(3) CT

(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex chemical

potential. The massless action is given by

Sn(µ) =
1

2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4

(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic symmetry. It

also breaks C,P and T symmetries into CT and P symmetry. We line up symmetries of this

case below.

(1) U(4) × U(4) (residual flavor symmetry among 16 species)

(2) P

(3) CT

(4) Cubic symmetry

These discrete symmetries are the same as those of Karsten-Wilczek fermion. From

the viewpoint of the universality class, these two theories belong to the same class. It is

reasonable since the Karsten-Wilczek term proportional to r in Eq.(1) works to assign O(1/a)

imaginary chemical potential to 14 species while 2 species has zero imaginary chemical

potential. More precisely, in weak-coupling limit, two of 16 species have zero imaginary
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
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∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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・2nd derivative terms

Vector (1-link)

Tensor (2-link)

Axial-V (3-link)

Pseudo-S (4-link)

4 8 4

・Cousins of Wilson fermion

・gamma-5 hermiticity

◆Naive flavored mass Creutz, Kimura, TM (10)
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• non-local: 1
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• In fact: ”!5” → !Dirac5 ⊗ !taste5

”Γ5” → !Dirac5 ⊗1taste

So that ”!5”×”Γ5” → 1Dirac ⊗ !taste5 , mass term (4 links)
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2          2 ξ5=-1  ξ5=+1

de Forcrand, Kurkela, 
Panero(2012)

{C0, Ξµ, Is, Rµν} × {U �(1)}m=0

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

�x

�

sym.

η1η2η3η4C1C2C3C4

∼ (1⊗ ξ5) + O(a)

Adams (09)

 ξ5=-1 → physical sector : 

 ξ5=+1 → decoupled sector : 
 With this mass shift  → �

h

◆Flavored mass

 ・Practical form

ηµDµ + r(1 + MA) + m MA = �x

�

sym.

η1η2η3η4C1C2C3C4

 Wilson-like term      mass parameter

Golterman, Smit (1984)   Adams(2009)
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2          2 ξ5=-1  ξ5=+1

de Forcrand, Kurkela, 
Panero(2012)

{C0, Ξµ, Is, Rµν} × {U �(1)}m=0

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

�x

�

sym.

η1η2η3η4C1C2C3C4

∼ (1⊗ ξ5) + O(a)

Adams (09)

C P SW4

 ξ5=-1 → physical sector : 

 ξ5=+1 → decoupled sector : 
 With this mass shift  → �

h

No parameter tuning for Lorentz symmetry !

 ・Practical form

ηµDµ + r(1 + MA) + m MA = �x

�

sym.

η1η2η3η4C1C2C3C4

 Wilson-like term      mass parameter

◆Flavored mass Golterman, Smit (1984)   Adams(2009)
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2       2

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual

39

with (Vµ)xy = Ux,µδy,x+µ. Here ε is represented as Γ55 = γ5 ⊗ γ5 in the spin-flavor
representation while ηµ followed by the transporter Cµ is represented as γµ ⊗ 1 up to
discretization errors, which we sometimes denote Γµ. Thus it is obvious that the MA

stands for (1⊗γ5)+O(a) while MH stands for (1⊗
∑

σµν)+O(a). We refer to MA as the
Adams-type [30] and MH the Hoelbling-type [32]. By diagonalizing γ5 or

∑
σµν , we find

that the Adams type splits 4 tastes into two branches with positive (m = +1) and the
other two with negative(m = −1) mass while the Hoelbling type splits them into three
branches with positive(m = +2), two with zero (m = 0) and the other one with negative
mass(m = −2). The divided Hoelbling flavored-mass terms (3.36)(3.37)(3.38) correspond
to divided types in the tensor-types mass for naive fermions (3.30)(3.31)(3.32) . They
have flavored structure as ∼ (1 ⊗ (σ12 + σ34)) + O(a). By diagonalizing it, we find the
flavor structure diag[0, 0,−2, 2]. They again split 4 taste into three branches with (1, 2, 1)
fermion modes. We will later discuss about whether these divided types have enough
discrete symmetries to restore euclidian Lorentz symmetry in the continuum limit.

We here check all these staggered flavored-mass terms (3.34)(3.35)(3.36)(3.37)(3.38)
lead to the second derivative terms proportional to a near the continuum. Near the
classical continuum limit, these staggered flavored-mass terms Mf are given by

Mf ∼ a

∫
d4xχ̄D2

µχ + O(a2) (3.43)

with proper mass shift. It is compatible with the criterion for the lattice fermion con-
struction. We now can construct the two types of staggered-WIlson fermions with these
flavored-mass terms which also lead to the staggered-overlap fermions.

Now let us compare these flavored-mass terms with the MP and M (i)
T for the naive

fermions in Fig. 3.6. It is obvious that the Adams-type flavored-mass term MA corresponds
to MP while the divided Hoelbling-type terms M (i)

H corresponds to M (i)
T . It is also possible

to see that MP and M (i)
T are decomposed into the Adams and the divided Hoelbling-

type terms through the spin diagonalization which we discussed in chapter 2 as χx =
γx4

4 γx3
3 γx2

2 γx1
1 ψx, χ̄x = ψ̄xγ

x1
1 γx2

2 γx3
3 γx4

4 . MP is decomposed into MA through this spin-
diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx.

Here the signs in front of χ̄x come from the residual γ5 which remain in the process of
the spin diagonalization of MP . By diaonalizing γ5, we find two Adams types terms with
positive sign and two with negative signs. Such signs are not relevant for the species-
splitting, and we can neglect them. M (i)

T is decomposed into M (i)
H through the spin-

diagonalization. For example, M (1)
H is derived from M (1)

T as

ψ̄x[(C1C2 + C2C1) + (C3C4 + C4C3)]ψx

→ ±χ̄x[iε12η1η2(C1C2 + C2C1) ± iε34η3η4(C3C4 + C4C3)]χx. (3.44)

The two types of signs come from σ12 = γ1γ2 and σ34 = γ3γ4, which remain after the
usual spin diagonalization process. The point is that they commute with each other as
[σ12,σ34] = 0, and they can be diagonalized simultaneously. If σ12 is diagonalized as

43

Staggered flavored-mass

◆Staggered-Wilson (Domain-wall, Overlap)

・Index theorem  Adams (09)   Follana, Azcoiti, Di Carlo, Vaquero(11)

Spectral flow

・Spin diagonalization   Creutz, Kimura, TM (10)

cf.) Edwards, Heller, Narayanan (98)  

HSW (m) = �(DSW −m)

Index(Dsw)   =  - Spectral flow(Hsw)

How to apply    :    As Wilson            →  Mass parameter tuning required
                               As Domain-wall  →   5th dimension introduced 
                               As Overlap           →  Overlap formula with StWil kernel

λ(m)

m
m

λ(m)

HW (m) = γ5(DW −m)

8      8



Hoelbling (10)

1       2          1

{C0, Ξµ, Is, Rµν} × {U �(1)}m=0

∼ (1⊗ i(σ12 + σ34)) + O(a)

{CT , Ξ�
µ, R12, R34, R13R42}

2d Aoki phase

・Aoki phase   Creutz, Kimura, TM(11)  TM, Nakano, Kimura, Ohnishi(12)

Strong-coupling lattice QCD & 2d model 
           → Implies parity-flavor broken phase

cf.) Lee, Sharpe (99),   
      Aubin, Wang (04),    
      Cheng, et.al. (11)  
      “Possible Aoki phase”                                          

・Another type (Hoelbling type)   Hoelbling (10), de Forcrand, Kurkela, Panero (10)

�

µν=12,34

iηµνηµ�µν(CµCν + CνCµ)

→  Requires fine-tuning of parameters for Lorentz sym. continuum Sharpe (12)

C P
Rotation symmetry broken !

ChPT analysis required → 1st or 2nd order ?

Let’s focus only on Adams type.



group reflecting U(2) × U(2). For pseudo-scalar mesons, pions form a 63-plet of flavor SU(8)
and are degenerate in the chiral and continuum limit. At finite lattice spacing, flavor symmetry
is not U(8) but U(2)×U(2). The question is what irreps of this group 63 pions fall into. We do
not study this point further here, but note that this situation is similar to the staggered fermion
with flavored mass as we will show.

Spin diagonalization decomposes (11) into four equivalent staggered fermions with Adams-
type flavored mass [3]. MP is decomposed through spin-diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx, (13)

where we define Adams-type flavored mass as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = (1 ⊗ ξ5) + O(a), (14)

with

Cµ = (Tµ + T †
µ)/2, (15)

(ηµ)xy = (−1)x1+...+xµ−1δx,y, (16)
(ε)xy = (−1)x1+...+x4δx,y. (17)

Here signs in front of χ̄x in (13) come from γ5 which remains after the spin diagonalization of
MP . By diaonalizing γ5, we find two with positive sign and two with negative signs. Such signs
are not relevant for species-splitting. Now we derive staggered fermion with flavored mass: (8)
is decomposed into

SA0 =
∑

xy

χ̄x[ηµDµ + MA]xyχy, (18)

and (11) is decomposed into

SA1 =
∑

xy

χ̄x[ηµDµ + r(1 + MA)]xyχy, (19)

where Dµ = 1
2(Tµ − T−µ). Lower flavor symmetry (U(2) × U(2)) in (8)(11) leads to breaking

of shift and spatial inversion symmetries into a combined one in both cases (18) (19) as we will
show later. However the action without non-hopping terms (18) possesses more symmetries as
remnant of Γ̄(−), which we call ”special-charge shift” and ”special-charge inversion”. In Sec. 3
we investigate symmetries and spectrum of these deformed staggered fermion.

2 Symmetries of Staggered fermions

We begin with review of original staggered fermions [4,5]. Symmetries of staggered fermions are
given by

{C0, Ξµ, Is, Rµν} × {U ε(1), C ′
T }m=0. (20)

Each of transformations is written as following:

(1) C0 is lattice charge conjugation, which is given by

C0 : χx → εχ̄T
x , χ̄x → −εχT

x , Uµ,x → U∗
µ,x. (21)

3

§ Potential problems of

1. Lorentz symmetry restored ?

(i) 24 terms for symmetric sum, (ii) 4 transporters  

vs
One component fermion (small matrix size)  

No parameter tuning!

2. Multi-link terms require numerical costs ?

Euclidian Lorentz symmetry, C, P, T     

→ likely to be restored from     

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,
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group reflecting U(2) × U(2). For pseudo-scalar mesons, pions form a 63-plet of flavor SU(8)
and are degenerate in the chiral and continuum limit. At finite lattice spacing, flavor symmetry
is not U(8) but U(2)×U(2). The question is what irreps of this group 63 pions fall into. We do
not study this point further here, but note that this situation is similar to the staggered fermion
with flavored mass as we will show.

Spin diagonalization decomposes (11) into four equivalent staggered fermions with Adams-
type flavored mass [3]. MP is decomposed through spin-diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx, (13)

where we define Adams-type flavored mass as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = (1 ⊗ ξ5) + O(a), (14)

with

Cµ = (Tµ + T †
µ)/2, (15)

(ηµ)xy = (−1)x1+...+xµ−1δx,y, (16)
(ε)xy = (−1)x1+...+x4δx,y. (17)

Here signs in front of χ̄x in (13) come from γ5 which remains after the spin diagonalization of
MP . By diaonalizing γ5, we find two with positive sign and two with negative signs. Such signs
are not relevant for species-splitting. Now we derive staggered fermion with flavored mass: (8)
is decomposed into

SA0 =
∑

xy

χ̄x[ηµDµ + MA]xyχy, (18)

and (11) is decomposed into

SA1 =
∑

xy

χ̄x[ηµDµ + r(1 + MA)]xyχy, (19)

where Dµ = 1
2(Tµ − T−µ). Lower flavor symmetry (U(2) × U(2)) in (8)(11) leads to breaking

of shift and spatial inversion symmetries into a combined one in both cases (18) (19) as we will
show later. However the action without non-hopping terms (18) possesses more symmetries as
remnant of Γ̄(−), which we call ”special-charge shift” and ”special-charge inversion”. In Sec. 3
we investigate symmetries and spectrum of these deformed staggered fermion.

2 Symmetries of Staggered fermions

We begin with review of original staggered fermions [4,5]. Symmetries of staggered fermions are
given by

{C0, Ξµ, Is, Rµν} × {U ε(1), C ′
T }m=0. (20)

Each of transformations is written as following:

(1) C0 is lattice charge conjugation, which is given by

C0 : χx → εχ̄T
x , χ̄x → −εχT

x , Uµ,x → U∗
µ,x. (21)
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◆Small matrix size

◆4-link hopping terms

Requires fewer Matrix-Vector 
multiplications for sign function !

1. Numerical costs reduced ?

 Gauge fluctuation is raised to 4th power !
   →    splitting of two branches reduced

Staggered-Overlap Dirac propagator
 CG solver with MxV (12^4, m=0.1)

Staggered-Wilson is better as an overlap kernel, 
but not much better.

Staggered overlap fermions Philippe de Forcrand

This figure also shows that the spectrum remains centered about the origin: changing m0 is
not the analogue of changing the mass in the Wilson operator, which shifts the whole spectrum.
Rather, m0 is the analogue of Wilson’s hopping parameter r [2].

This is why the eigenvalue gap in the Hermitian operator HA(m) (Fig. 1) persists for large val-
ues of |m|. Shifting the whole spectrum ofDA by a taste-independent mass term is also possible, but
will destroy the symmetry of the spectrum about the origin without any computational advantage.
Finally, Fig. 5 (right) shows how the gap in the spectrum of DA closes at ! = 5.8.

6. Conclusion

Our study shows that Adams’ staggered overlap operator works as advertised: the taste-
dependent mass operator in its kernel yields 2 massless tastes without fine-tuning, and the topology
and locality properties are similar to Neuberger’s operator.

On very smooth gauge configurations, the computer cost of a quark propagator is nearly an
order of magnitude less than in Neuberger’s case, but the 4-link transporters in the flavored mass
term reduce this advantage to a factor O(2) on ! = 6 configurations. Another drawback of Adams’
construction is that the continuous symmetry of the massless staggered overlap operator is U(1),
not SU(2) as one would wish for a 2-flavor chiral symmetry.

The lack of robustness and of full chiral symmetry can both be addressed by modifying the
mass operator, for example with 2-link transporters [11] that reduce the number of light tastes to
1. Preliminary results [12] confirm our expectations, but do not bring the cost of staggered overlap
fermions near that of ordinary staggered fermions: avoiding rooting still has its price.
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Figure 4: Computer cost of one overlap propagator, measured in outer CG iterations (left), matrix-vector
multiplications (middle) and CPU time (right). The values for Adams’ operator are shown in red, those for
Neuberger’s operator in green. The gauge field is the free field (top), or a ! = 6.0 configuration (bottom).

the distance |x− y|, which should be bounded by exp(−|x− y|/(ca)), where (ca) is a localization
length proportional to the lattice spacing a, and thus shrinking to zero in the continuum limit.

Fig. 3 shows the maximum magnitude maxy |Dov(x0,y)| versus the Manhattan distance |x0−y|,
chosen to follow the conventions of Ref. [7] for the Neuberger operator. The left figure corresponds
to Adams’ overlap operator, the right one to Neuberger’s, on the same gauge configurations at 3
values of ! . While Adams’ operator behaves differently at short distance because of the 4-link
transporters, at large distances the decay of the matrix elements is exponential as in Neuberger’s
case, with a similar localization length. 2

5. Robustness to gauge fluctuations and efficiency

We have studied the computational cost of a quark propagator calculation with Adams’ op-
erator and compared it to Neuberger’s propagator (for one component) on the same gauge field
background, and with the same numerical approach. As the matrix to invert is 4 times smaller, and
its spectrum is closer to the unit circle, at least in the free case (Fig. 2), Adams’ operator may be
computationally cheaper.

The propagator is obtained as the solution of (Dov+m)†(Dov+m)x = (Dov+m)†b, using a
conjugate gradient iterative solver, using the following simple and robust method [9]: at each
iteration of this outer CG, sign(H) is applied to a vector v through a Lanczos process, building a

2This happens even though the kernel of Adams’ operator is much less local than that of Neuberger’s: a less
ultralocal kernel may lead to a more local overlap operator [8].
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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symmetries are broken into

{C0, C ′
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There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
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These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,
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§ Staggered-Wilson

1 & ξ5

ξ4 & ξ45

ξi4 & ξi45

ξi & ξi5

Irreps mix in ξ5 pairs

π0, π±

η�

Discrete symmetries are sufficient for degenerate pion triplet!

cf.) SU(2) in ChPT 
potential upto 

States in 3d irrep

{C0,Ξj , Is, Rij}

{C0,Ξ�
j , Rij}

Transfer-matrix sym.
{C0, Ξµ, Is, Rµν} × {U �(1)}m=0

�̄� , h̄h

�̄h , h̄�

�̄σj� , h̄σjh

�̄σjh , h̄σj�

Physical sector

→
→
→
→

Pion spectrum

Sharpe (12)2. How about taste breaking ?

C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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・Adams fermion will work as 2-flavor Wilson. 

・Taste-breaking exists, but small enough to
     have degenerate pion triplet. 

・Further study is needed to reveal numerical 
    merit or demerit. 

◆ Short summary

Usual improvement works ? (Fixed topology, smearing)

How about other mesons and baryons?
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Wilson
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2. Central-branch



Another U(1) !

Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)

!"##$

%&##$

Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

・Wilson w/o onsite term

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

2. Central-branch

S =
1
2

�

x,µ

ψ̄x[γµ(Ux,µψx+µ − Ux,−µψx−µ)− (Ux,µψx+µ + Ux,−µψx−µ)]

ψx → eiθ(−1)x1+x2+x3+x4
ψx, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4



・Wilson w/o onsite term

Another U(1) !
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Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Prohibits additive mass renormalization !
SSB gives NG boson !

2. Central-branch Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)

γ5 ⊗ ξ5

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

S =
1
2

�

x,µ

ψ̄x[γµ(Ux,µψx+µ − Ux,−µψx−µ)− (Ux,µψx+µ + Ux,−µψx−µ)]

ψx → eiθ(−1)x1+x2+x3+x4
ψx, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4



◆ Strong-coupling QCD

In the case of the Wilson fermion, M̂ = (m + 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have





σ =
−MW ±

√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥ M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 − M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 $= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P, Aα}. Then, by setting

p = (π, π,π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π,π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 + M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that MW = 0 corresponds to the cen-

tral cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0,π, 0), (π, 0, 0,π), (0,π, π, 0), (0,π, 0, π) and (0, 0,π,π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to correspond to QCD with six flavors, which is still asymp-

totically free. Therefore, if an appropriate continuum limit exists, we expect the theory in the

limit will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion ac-

tion itself possesses the hypercubic symmetry6 which is likely to lead to the Lorentz symmetry

6Although the 3rd term in (16) looks hypercubic non-invariant, it is just an expression artifact: As is argued
in [46], the spin-taste representation does not respect translational invariance, leading to apparent Lorentz non-
invariance in this case. Actually such a term is prohibited by imposing this invariance. The expression is not
suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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NG boson associated 
with SSB of U(1) 

 6-flavor massless QCD

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψ̄ψ ↔ ψ̄γ5ψ (1)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (2)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (3)

MH = M (1)
H + M (2)

H + M (3)
H , (4)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (5)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (6)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (7)

MT %→ MH (8)

M (i)
T → M (i)

H (9)

[σµν ,σνρ] %= 0 (10)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (11)

x → R(µν)R(ρσ)x (12)

Dnf − (MV + MT + MA + MP ) (13)

1

change of mass base・No additive mass renormalization (no fine-tuning)
・SSB of U(1) and massless NG boson
・No O(a) errors

§ Advantages

§ Potential drawbacks

Aoki phase

・sign problem
・U(1) problem
・Quark mass 

�ψ̄ψ� = 0

�ψ̄γ5ψ� �= 0

Twisted-mass works ?

・Pion (eta) condensate

・No chiral condensate

→ 12-flavor QCD

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψ̄ψ ↔ ψ̄γ5ψ (1)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (2)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (3)

MH = M (1)
H + M (2)

H + M (3)
H , (4)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (5)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (6)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (7)

MT %→ MH (8)

M (i)
T → M (i)

H (9)

[σµν ,σνρ] %= 0 (10)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (11)

x → R(µν)R(ρσ)x (12)

Dnf − (MV + MT + MA + MP ) (13)

1

?

Could be a new possibility of 12-flavor lattice QCD

Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 

6th-rooting works ?



・ For other naive flavored mass terms 

MA  :  U(1) restored  

MT  :  U(2) restored

MP  :  U(4) restored

・For staggered flavored mass terms 

MA  : CT’Ξ,  CT’I restored
MH  :  CT’ restored

◆ Central points for other flavored masses

! !

! !
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.

5

C �
T : χx → χ̄T

x , χ̄x → χT
x , Ux,µ → U∗

x,µ

Aoki phase in Hoelbling fermion
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3. Minimal-doubling



Karsten(81) Wilczek(87)

◆ Advantage

・U(1) chiral symmetry
・Ultra-local
・2 flavor possible

◆ Drawbacks
・Hypercubic symmetry breaking
・Tuning parameters for a correct continuum limit 
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µ

(1− cos pµ)

Finite-mass system(Wil) ⇆ Finite-density system(FCP) 

(i) γ4

3�

j=1

(1− cos pj)

Capitani, Creutz, Weber, Wittig (09)(10) 

3. Minimal-doubling
Flavored imaginary chemical potential term lifts species degeneracy.          
                                                                         cf.) Flavored mass in Wilson

Creutz(07) Borici(87) Creutz,TM(10)

Bedaque, Buchoff, Tiburzi, Walker-Loud(08)

→    keeping one chiral sym.



Parameter phase structure
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σ = 0σ ≠ 0σ = 0

◆Symmetries

4

naive fermion action as

SKW =
∑

x

[

1

2

4
∑

µ=1

ψ̄xγµ (Ux,x+µψx+µ − Ux,x−µψx−µ)

+r
i

2

3
∑

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j)

+iµ3ψ̄xγ4ψx

]

, (1)

where the second line with a parameter r is a flavored-chemical-potential term, which works

to lift the degeneracy of species. The third line with a relevant parameter µ3 is a dimension-3

counterterm, which corresponds to an O(1/a) chemical potential term [44]. If one drops i

in front of the second and third lines, this becomes a real-type Karsten-Wilczek fermion

without γ5 hermiticity while we in this paper focus on the imaginary-type KW fermion

basically. For the free theory, the associated Dirac operator in momentum space is given by

aDKW(p) = i
4

∑

µ=1

γµ sin apµ + iγ4(µ3 + 3r − r
3

∑

j=1

cos apj). (2)

For r = 1 and µ3 = 0, it has only two zeros at p = (0, 0, 0, 0), (0, 0, 0, π/a). The rest

14 species have O(1/a) imaginary chemical potential due to the flavored-chemical-potential

term. More precisely, among the original 16 species, two have zero imaginary chemical

potential, six have 2/a, six have 4/a and two have 6/a. In the naive continuum limit, the

14 species are decoupled with infinite imaginary chemical potential and there remains only

two flavors as shown in Fig. 1 [45]. The flavored chemical potential term breaks discrete

symmetries. The residual symmetries are cubic symmetry, corresponding to permutation of

spatial three axes, CT and P [27]. We list the symmetries of importance as following;

(1) U(1) chiral symmetry (γ5 ⊗ τ3 [30–34])

(2) P

(3) CT

(4) Cubic symmetry.

Since the cubic symmetry is likely to be enhanced to the 3d rotation symmetry in the

continuum, we expect that these symmetries become those of the finite-density QCD in the

continuum limit. To convince ourselves, let us look into symmetries of the naive lattice

Bedaque, Buchoff, Tiburzi, Walker-Loud(08)

 → symmetries of finite-density systems

◆Counterterms Capitani, Creutz, Weber, Wittig (09)(10) 

◆Chiral phase structure

Nontrivial phase diagram in the parameter space 

TM (12) 

ψ̄niγ4ψn ψ̄nγ4Dψn Fi4Fi4dim3  dim4  

Fine-tuning of three parameters are required for Lorentz sym.



◆ Finite (T, µ) QCD with FCP

§ Strong-coupling study

Smd =
�

x

�
1
2

3�

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j) +
1
2
ψ̄xγ4

�
eµUx,x+4ψx+4 − e−µUx,x−4ψx−4

�

+
i

2

3�

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j) + id3ψ̄xγ4ψx

�

Chiral phase structure

Misumi, Kimura, Ohnishi (2012)

Effective potential of σ as a function of T, µ and d3

・1st and 2nd phase transition (m=0)
・1st, critical point and crossover (m≠0)

New possibility of (T,µ) lattice QCD !
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.15 and (right) T = 0.10.

Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are 1st and

2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior instead of

the 2nd order transition.

R0
st " 3 × 0.56/(5/3) ∼ 1 [11, 12], while R0

KW " 0.406/0.178 ∼ 2.3. In the real world,

this ratio is larger, R0 >∼ MN/170 MeV ∼ 5.5. When the finite coupling and Polyakov

loop effects are taken into account for staggered fermion, Tc(µB = 0) decreases, µc(T =

0) stays almost constant, then R0 value increases [14–16]. Larger R0 with KW fermion

in the strong coupling limit may suggest smaller finite coupling corrections in the phase

boundary. Another interesting point is the location of the tricritical point. In KW fermion,

the ratio Rtri
KW = 0.402/0.119 " 3.4, while Rtri

st = 1.73/0.866 " 2.0 for unrooted staggered

fermion [11, 12]. It would be too brave to discuss this value, but Rtri
KW is consistent with the

recent Monte-Carlo simulations [42], which implies that the critical point does not exist in

the low baryon chemical potential region, µB/T <∼ 3. These observations reveal usefulness

of KW fermion for research on QCD phase diagram.

The µB dependence of σ and ρB seems to show there are two sequential transitions with

increasing µB. At T = 0.15 > T tri, σ quickly decreases and ρB increases at µB " 0.25
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FIG. 3: Phase diagram for the chiral transition with r = 1, µ3 = −0.9 and m = 0. Green and red

lines show 2nd and 1st transition lines, respectively. The transition order is changed from 2nd to

1st at the tricritical point (µtri
B , T tri) = (0.402, 0.119).

in the strong-coupling limit in Fig. 2. We here take µ3 = −0.9. In a massless case m = 0,

the phase boundary of the 2nd order chiral phase transition is given by the condition, such

that the coefficient of σ2 in the free energy becomes zero. When the order of the phase

transition is changed from 2nd to 1st, the coefficient of σ4 as well as σ2 should vanish in the

free energy Feff(σ).

Figure 3 shows the phase boundary of the chiral transition with r = 1, µ3 = −0.9 and

m = 0. The order of the phase transition is changed from 2nd to 1st at the tricritical

point (µtri
B , T tri) = (0.402, 0.119). We also depict σ condensate and the baryon density

ρB = −∂Feff/∂µB as functions of µB with several fixed T in Fig. 4. We find that there are

first (T < T tri) and second (T > T tri) order phase transitions for σ, followed by the phase

transition of the density ρB. For m "= 0, we can easily show that the crossover transition

instead appears with the 2nd-order critical point.

These results are qualitatively consistent with those with strong-coupling lattice QCD

with staggered fermions, while there are some quantitative differences. For example, the

KW phase diagram is suppressed in T direction compared to that in staggered. We here

compare the ratio of the transition baryon chemical potential at T = 0 to the critical

temperature at µB = 0, R0 = µc(T = 0)/Tc(µB = 0). In staggered fermion, this ratio is

Still fine-tuning for O(1/a) chemical potential renorm.....    cf.)additive mass in Wilson
But the discrete symmetries suit this case. P.Hasenfratz, Karsch (83)



4. Summary

1. Flavored-mass terms give us new types of  Wilson and   
    overlap fermions.   
 
2. Staggered-Wilson can be an alternative Wilson and overlap for  
     2-flavor QCD  (3 degenerate pion spectrum)

3. Central-branch fermion is a new possibility of use of Wilson   
    for many-flavor QCD without fine-tuning of parameters.  
    
4. Flavored-chemical-potential fermion would be useful for
    finite-temperature & density lattice QCD.  
                                                                    



Related talks
Tuesday 15:30 Room 8         Taro KIMURA      
“QCD Phase diagram with 2-flavor discretization”

Wednesday  9:30 Room 5   Takashi NAKANO    
“Strong coupling analysis of Aoki phase in St-Wil fermions”
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◆ Spectral flow 

would-be zero modes : low-lying real crossing
(i) Hermitian operator (ii) Eigenvalue flow

Index(DW)   =  - Spectral flow(HW)

※ Spectral flow :
         Crossings counted with ± slopes

R.Edwards, U.Heller, R.Narayanan (1998)

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

June 15, 2011

1 Introduction

Index(DW ) = (−1)d/2Q (1)

Index(Dn) = 2d(−1)d/2Q (2)

ψ̄(1 ⊗ γ5)ψ (3)

ψ̄(1 ⊗ σµν)ψ (4)

n → n + µ̂ (5)

nµ → −nµ (6)

Dno = 1 + γ5
Hn(m)√
H2

n(m)
(7)

Dso = 1 + Γ55
Hst(m)√
H2

st(m)
(8)

Index(Dst) = 2d/2(−1)d/2Q (9)

Hn = γ5(Dn − MP)
= (γ5 ⊗ (τ3 ⊗ τ3))(Dn − m(1 ⊗ (τ3 ⊗ τ3))) = (γ5 ⊗ (τ3 ⊗ τ3))Dn − m(gamma5 ⊗ (1 ⊗ 1)))

(10)




+1
+1

−1
−1



 (11)

1

Index(DW)=-1

from the continuum limit using the spectral flow of a certain Hermitean version of the
Dirac operator. The integer index obtained here correctly illustrates the gauge topological
charge up to a factor coming from species. Indeed we will show the spectral flow correctly
illustrates the index determined by the gauge field topology in naive, minimally doubled
and staggered fermions. In the end of this chapter we also present overlap versions built
from the generalized WIlson and staggered-Wilson fermion kernels. It is a universal
feature for fermions with species doublers that you can obtain the associated overlap
fermion with a proper flavored mass term illustrating the correct index.

Note the results in this chapter are basically based on the original works [29, 75] by the
present author. I also refer to the results on the index theorem in the staggered fermion
in the reference [30].

5.1 Spectral flow and the index theorem

In this section we obtain the integer index related with gauge field topology for the
minimally doubled, naive and staggered fermions with flavored-mass terms. As in the
cases of Wilson [76] we utilize the spectral flow of the Hermitean operators. Here the
would-be zero modes of the Dirac operators are identified as low-lying crossings of the
eigenvalue flow of the Hermitean operators.

Let us begin with explaining what the spectral flow is. In the continuum field theory
the index is defined as the difference between the numbers of zero modes of the massless
Dirac operator with positive and negative chirality, n+ and n−. The statement of the
index theorem is that the index is just equal to a topological charge Q of a background
gauge configuration up to a sign factor depending on its dimensionality,

n+ − n− = (−1)d/2Q. (5.1)

Here the question is how to obtain the index of the Dirac operator. We can of course
calculate the zero-mode chiralities straightforwardly, but there is a useful way called
spectral flow. To introduce it we first introduce a certain Hermitean version of the Dirac
operator

H(m) = γ5(D − m), (5.2)

where any zero modes of the Dirac operator with ± chirality correspond to some eigen-
modes of this Hermitean operator with eigenvalues λ(m) = ∓m. If we now consider the
flow of the eigenvalues λ(m) as the mass varies, those corresponding to zero modes will
cross the origin with slopes ∓1 depending on their ± chirality. The non-zero eigenmodes
of D, in contrast, occur in pairs which are mixed by H and cannot cross zero. Therefore
the index of the Dirac operator is given by minus the spectral flow of the Hermitean op-
erator, which stands for the net number of eigenvalues crossing the origin, counted with
sign ± depending on the slope.

The index with lattice Wilson fermions [76] can similarly be obtained from the spectral
flow, which in this case means the net number of eigenvalues crossing zero at low-lying
values of m, counted with signs of the slopes. In the continuum limit, we are only
interested in the crossings at small mass; the massive doublers also eventually cross zero,
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Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

January 9, 2012

1 Introduction

H2 = D†D + m2 ≥ 0 (1)

〈ψ̄iγ5τ3ψ〉 $= 0 (2)

m2
π = C|M − Mc| ≡ Cmq (3)

SGN =
∫

d2x [ψ̄(i∂µ − m0)ψ +
g2

2N
{(ψ̄ψ)2 + (ψ̄iγ5ψ)2}] (4)

Veff(σc,πc) = −mσc +
1
4π

(σ2
c + π2

c ) ln
σ2

c + π2
c

eΛ2
(5)

1
g2

=
1
π

ln
M

Λ
, (M → ∞) (6)

m =
m0

g2
(7)

1
g2

R

=
1
π

ln
µ

Λ
(8)

ψ̄xC1C2C3C4ψx →





1
1

−1
−1



 εxχxη1η2η3η4C1C2C3C4χx (9)

ψx = γx1
1 γx2

2 γx3
3 γx4

4 χx, ψ̄x = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 (10)

a

∫
d4xψ̄(x)D2

µψ(x) (11)

1

・lattice theory (Wilson fermion)

chirality : minus the sign of slope

zero mode : low-lying crossing

(i) Hermitian operator

(ii) Eigenvalue flow

approximate chirality :

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms
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1

only for zero modes
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Index 
theorem

2d Wilson fermion



◆For generalized Wilson fermions

Index(Dgw)   =  - Spectral flow(Hgw)

36×36 lattice, randomness δ=0.25, Q=1

13

FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

doubled
Index(Dgw) = -4

M. Creutz, T. Kimura, TM, JHEP1012:041 (2010) 

but only for large values of m. Now we can symbolically write a formula for the index as

Index(D) = −Spectral flow(H). (5.3)

It is quite natural to consider whether this formula is also available to detect the index
of minimally doubled, naive and staggered fermions with the flavored mass terms we
proposed. We will from now show this spectral flow method can be also applied to
these cases. We first study the case for the minimally doubled and naive fermions. The
associated Hermitean operators for minimally doubled and naive fermions are given by

Hmd(mτ3) = γ5(Dmd − Mτ3), (5.4)

Hnf(mτ3⊗τ3) = γ5(Dn − Mτ3⊗τ3), (5.5)

where the matrix γ5 is regarded as a flavored one, γ5 ⊗ τ3 for minimally doubled fermions
and γ5 ⊗ (τ3 ⊗ τ3) for two dimensional naive fermions in terms of the flavor multiplet.
The flavored mass terms Mτ3 and Mτ3⊗τ3 for d = 2 have been already given in Eq. (3.9)
and (3.18) with the parameters mτ3 for the minimally doubled fermion and mτ3⊗τ3 for
the naive fermion. We here use these parameters as a mass parameter of the continuum
hermitian Dirac operator in (5.2). Thus the eigenvalues are functions of mτ3 and mτ3⊗τ3

as λ(mτ3) and λ(mτ3⊗τ3). (These parameters correspond to the Wilson parameter r in
(4.1) rather than the mass parameter since it is a parameter for the flavored-mass term.)
For now we focus on the two dimensional case.

We then numerically calculate the eigenvalue flows of two dimensional minimally dou-
bled and naive fermions. We consider background configurations proposed in [79] for the
staggered case [30]: we start with a smooth U(1) gauge field with topological charge Q,

Ux,1̂ = eiωx2 , Ux,2̂ =

{
1 (x2 = 1, 2, · · · , L − 1)

eiωLx1 (x2 = L)
, (5.6)

where L is the lattice size and ω is the curvature given by ω = 2πQ. Then, to emulate
a typical gauge configuration of a practical simulation, we introduce disorder effects to
link variables by random phase factors, Ux,µ → eirx,µUx,µ, where rx,µ is a random number
uniformly distributed in [−δπ, δπ]. The parameter δ determines the magnitude of disorder.

Fig. 5.1(a) shows the eigenvalue flow of the minimally doubled Hermitean operator
(5.4). It is calculated with a Q = 1 and δ = 0.25 background configuration on a 16 × 16
lattice. There are two low-lying crossings around m = 0 with positive slopes, which cor-
respond to would-be zero modes. With the formula (5.3), it means the index of the Dirac
operator of the minimally doubled fermion in this case is −2. This result is consistent
with the index theorem for the minimally doubled fermions given by

Index(Dmd) = 2(−1)d/2Q, (5.7)

which contains a factor 2 reflecting two species. This relation is also satisfied by cases
with other topological charges, as shown in Fig. 5.2(a) for the case for Q = 2. Here
the net number of crossings counted with ± depending on the slopes is 4. It means
the corresponding index is −4, which is consistent with (5.7). We also emphasize that
there is a clear separation between low- and high-lying crossings in Fig. 5.1(a) where
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◆For staggered-Wilson fermions

Index(Dsw)   =  - Spectral flow(Hsw)

Index(Dsw)=-2

D.H.Adams  (2010)
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Figure 5.3: Spectral flows of staggered Hermitean operators λ(mf ), δ = 0.33 background
configuration on a 16 × 16 lattice. The same result was shown first in [30].

up to a integer factor from the number of tastes as

Index(Dst) = 2d/2(−1)d/2Q (5.10)

One of the results is shown in the figure 5.3. Here the spectral flow again means the net
number of eigenvalues crossing zero at low-lying values of m, counted with signs of the
slopes. Thus the theoretical foundation of the index theorem with staggered fermions is
established without a renormalization depending on the gauge ensemble.

5.2 Overlap formulation

In this section we discuss overlap fermions constructed from the staggered-Wilson and
generalized Wilson fermions. Firstly we show the index of exact zero modes of these
overlap versions also illustrate the topological charge correctly. We now introduce overlap
Dirac operators based on the staggered-Wilson and the generalized Wilson fermions as,

Dso = 1 + ε
Hst√
H2

st

, Dno = 1 + γ5
Hn√
H2

n

. (5.11)
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※ gauge configuration :

ψ̄xC1C2C3C4ψx →





1
1

−1
−1



 εxχxη1η2η3η4C1C2C3C4χx (13)

ψx = γx1
1 γx2

2 γx3
3 γx4

4 χx, ψ̄x = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 (14)

a

∫
d4xψ̄(x)D2

µψ(x) (15)

Index(DW ) = (−1)d/2Q (16)

Index(Dgw) = 2d(−1)d/2Q (17)

Index(Dsw) = 2d/2(−1)d/2Q (18)

ψ̄(1 ⊗ γ5)ψ (19)

ψ̄(1 ⊗ σµν)ψ (20)

n → n + µ̂ (21)

nµ → −nµ (22)

Dgo = 1 + γ5
Hgw(m)√
H2

gw(m)
(23)

Dso = 1 + Γ55
Hsw(m)√
H2

sw(m)
(24)

Index(Dst) = 2d/2(−1)d/2Q (25)

Hn = γ5(Dn − MP)
= (γ5 ⊗ (τ3 ⊗ τ3))(Dn − m(1 ⊗ (τ3 ⊗ τ3)))
= (γ5 ⊗ (τ3 ⊗ τ3))Dn − m(γ5 ⊗ (1 ⊗ 1)) (26)





+1
+1

−1
−1



 (27)
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Index theorem holds for them.

but only for large values of m. Now we can symbolically write a formula for the index as

Index(D) = −Spectral flow(H). (5.3)

It is quite natural to consider whether this formula is also available to detect the index
of minimally doubled, naive and staggered fermions with the flavored mass terms we
proposed. We will from now show this spectral flow method can be also applied to
these cases. We first study the case for the minimally doubled and naive fermions. The
associated Hermitean operators for minimally doubled and naive fermions are given by

Hmd(mτ3) = γ5(Dmd − Mτ3), (5.4)

Hnf(mτ3⊗τ3) = γ5(Dn − Mτ3⊗τ3), (5.5)

where the matrix γ5 is regarded as a flavored one, γ5 ⊗ τ3 for minimally doubled fermions
and γ5 ⊗ (τ3 ⊗ τ3) for two dimensional naive fermions in terms of the flavor multiplet.
The flavored mass terms Mτ3 and Mτ3⊗τ3 for d = 2 have been already given in Eq. (3.9)
and (3.18) with the parameters mτ3 for the minimally doubled fermion and mτ3⊗τ3 for
the naive fermion. We here use these parameters as a mass parameter of the continuum
hermitian Dirac operator in (5.2). Thus the eigenvalues are functions of mτ3 and mτ3⊗τ3

as λ(mτ3) and λ(mτ3⊗τ3). (These parameters correspond to the Wilson parameter r in
(4.1) rather than the mass parameter since it is a parameter for the flavored-mass term.)
For now we focus on the two dimensional case.

We then numerically calculate the eigenvalue flows of two dimensional minimally dou-
bled and naive fermions. We consider background configurations proposed in [79] for the
staggered case [30]: we start with a smooth U(1) gauge field with topological charge Q,

Ux,1̂ = eiωx2 , Ux,2̂ =

{
1 (x2 = 1, 2, · · · , L − 1)

eiωLx1 (x2 = L)
, (5.6)

where L is the lattice size and ω is the curvature given by ω = 2πQ. Then, to emulate
a typical gauge configuration of a practical simulation, we introduce disorder effects to
link variables by random phase factors, Ux,µ → eirx,µUx,µ, where rx,µ is a random number
uniformly distributed in [−δπ, δπ]. The parameter δ determines the magnitude of disorder.

Fig. 5.1(a) shows the eigenvalue flow of the minimally doubled Hermitean operator
(5.4). It is calculated with a Q = 1 and δ = 0.25 background configuration on a 16 × 16
lattice. There are two low-lying crossings around m = 0 with positive slopes, which cor-
respond to would-be zero modes. With the formula (5.3), it means the index of the Dirac
operator of the minimally doubled fermion in this case is −2. This result is consistent
with the index theorem for the minimally doubled fermions given by

Index(Dmd) = 2(−1)d/2Q, (5.7)

which contains a factor 2 reflecting two species. This relation is also satisfied by cases
with other topological charges, as shown in Fig. 5.2(a) for the case for Q = 2. Here
the net number of crossings counted with ± depending on the slopes is 4. It means
the corresponding index is −4, which is consistent with (5.7). We also emphasize that
there is a clear separation between low- and high-lying crossings in Fig. 5.1(a) where

50

13

FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

Index(Dgw) = -8

36×36 lattice, randomness δ=0.25, Q=2
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FIG. 1. Spectrum of various kernel operators with r = 1 in the free field case on a 324 lattice.

Additionally, M1 has two crucial properties: it is hermitian and commutes with η. Both of

these follow straightforwardly from the definitions.

Using these properties, we can immediately see that the modified staggered operator 1

DA(m0) = Dst + r (1 +M1) +m0 (5)

with the Wilson-like parameter r fulfills a γ5-hermiticity like condition DA(m)η = ηD†
A(m).

Consequently, its non-real eigenvalues appear in complex conjugate pairs. Due to its spin-

flavor structure (4), the addition of M1 in (5) will spread out the spectrum in the real

direction, giving modes a mass term according to their approximate flavor chirality (cf.

fig. 1(a)). It was demonstrated in [1] that this operator is a suitable overlap kernel. The

resulting overlap operator obeys an index theorem with two fermion flavors [1, 6].

The fact that one is left with two fermion flavors originates in the dimension two of the

positive and negative flavor chirality subspaces in four space-time dimensions. In order to lift

this remaining degeneracy, an additional operator is needed, which differentiates between

flavors of the same chirality. In the flavor Clifford algebra, the natural candidates are

the matrices σµν = iξνξµ. The σµν commute with ξ5 and can therefore simultaneously be

diagonalized. Furthermore, σµν has one eigenvalue 1 and one −1 in both the positive and

negative chirality subspace. Therefore, one can choose a common diagonal basis where

ξ5 = diag(1, 1,−1,−1) σµν = diag(1,−1,−1, 1) (6)

1 Note that we have also added a mass term r +m0 in order to shift the physical part of the spectrum to

the correct position.

・Generalized overlap

・Staggered-overlap

Any-flavor (1~15) overlap is possible!
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3 γx4
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4 γx3

3 γx2
2 γx1
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∫
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Index(Dn) = 2d(−1)d/2Q (17)
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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Figure 3.4: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone for Dn − MT

Wilson fermion is not negligible near zeros of doublers, which causes species splitting in
a different way.

We note the vector type with the mass shift is exactly the Wilson term. We show the
figure for eigenvalues of the free Dirac operator Dn − MP in Fig. 3.3(a). The mass term
splits the modes into two branches, which are 8 fold degenerate. If we introduce other
types of mass terms, the degeneracy is lifted as seen in Fig. 3.3(b). All the sum of them
gives the one flavor branch as in in Fig. 3.3(c). We also show the figure for eigenvalues of
the free Dirac operator Dn − MT in Fig. 3.4. The mass term splits the modes into three
branches, which are 4, 8 and 4 fold degenerate. We note the fermion modes in the same
branch of the Dirac spectrum have the same chiral charge as a result that the flavored
mass terms satisfy the γ5 hermiticity. For example the four fermions at the left branch in
Dn − MT in Fig. 3.4 have + chiral charge.

By using these five flavored-mass terms, we obtain the generalized Wilson fermions
with any flavor from one to sixteen. Possible applications are many-flavor QCD and the
direct physical two- or three-flavor QCD. It also suggests the generalized overlap fermion
is also constructed from these. Here we can obtain overlap fermions with any desirable
flavors by letting the left branch contain a desirable flavor of species and shifting this
branch to have the negative mass.

3.3 Flavored mass for staggered fermions

In this section we study staggered versions of the Wilson term, in which the flavored-
mass terms lift the four degenerate tastes in a manner similar to the usual Wilson term.
The concrete examples of the flavored-mass terms for the staggered fermions were first
discussed in [59], and revisited in [30, 31, 32]. Thus the contents of this section are not
a contribution from this thesis. However, as we will see later, I contribute much to this
topic by studying the symmetries of them and the phase structure. Thus in this section
we need to review details of this topic.
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Low-lying crossings are far from high-lying ones

negative-mass mode in DW → massless mode in Dov

Figure 5.1: Spectral flows of (a) Minimally doubled λ(mτ3) and (b) naive λ(mτ3⊗τ3) Her-
mitean operators with a Q = 1, δ = 0.25 background configuration on a 16 × 16 lattice.
Two single crossings with positive slopes are seen in (a), which means the index is −2.
Two doubled crossings with positive slopes are seen in (b), which means the index is −4.
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          broken to 2-link shift for SA 
          broken to 4-link shift for SH 

・Axis reversal                broken to shifted axis reversal 

  remain in SA

  broken to subgroup in SH 

・Conjugation                                   

In the QCD simulation we will tune the mass parameter M to take a chiral
limit. For some negative value of the mass parameter: −1 < M < 0 for
Adams-type and −2 < M < 0 for Hoelbling-type, we obtain two-flavor and
one-flavor overlap fermions respectively by using the overlap formula.

3 Symmetry

In this section we discuss the discrete symmetry of the staggered-Wilson
fermions. Most of conclusions we will show in this section were already
shown in the old reference [25, 27] and the recent two papers [9, 10]. The
potential problem for staggered-Wilson fermions in lattice QCD is the dis-
crete symmetry breaking. As discussed in [9, 10], the discrete symmetries
possessed by the original staggered fermion is broken to their subgroups both
in the Adams-type and Hoelbling-type actions. One of the broken discrete
symmetries is the shift symmetry, whose transformation is given by

Sρ : χx → ζρ(x)χx+ρ̂, χ̄x → ζρ(x)χ̄x+ρ̂, Uµ,x → Uµ,x+ρ̂, (9)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1.
The Adams-type fermion is invariant under the subgroup x → x + 1̂ ± µ̂
while the Hoelbling-type fermions is invariant under x → x + 1̂ ± 2̂ ± 3̂ ± 4̂.
Note that these subgroups include the doubled shift x → x + 2µ̂ as their
subgroup. The axis reversal invariance is also broken in both cases, whose
transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by

Rρσ : χx → SR(R−1x)χR−1x, χ̄x → SR(R−1x)χ̄R−1x, Uµ,x → Uµ,Rx, (11)

where Rρσ is the rotation xρ → xσ, xσ → −xρ, xτ → xτ , τ #= ρ,σ and
SR(x) = 1

2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.
As shown in [25, 26], these transformations yield rotations in spinor

and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
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C : χx → εxχ̄T
x , χ̄x → −εxχ̄T

x , Uµ,x → U∗
µ,x (1)

MA, MH, M (i)
H (2)

MA, MH (3)

ψ̄[1 ⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3)]ψ (4)

ψ̄[1 ⊗ γ5]ψ (5)

MA = ζ5

∑

sym.

4∏

µ=1

Cµ (6)

M1L =
∑

µ

ξµCµ ∼
∑

µ

(1 ⊗ γµ) + O(a) (7)

MW ≡ m + 4r = 0 (8)

ψ̄ψ ↔ ψ̄γ5ψ (9)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (10)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (11)

1
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flavor spaces respectively, which are given by two sets of 16×16 matrices Γµ and Ξµ. We note

they possess the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using

these definitions the Dirac operator for the staggered fermion is given by Dst = iΓµ sin pµ

for the 16 multiplet φ(p) [30] while the shift transformation is given by essentially flavor

rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (12)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (13)

The rotational transformation is also given by both the spinor and flavor rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (14)

By using this representation, we can clearly figure out the properties of the residual discrete

symmetry of the staggered-Wilson fermions. What we here want to emphasize is that

the staggered-Wilson fermions are invariant under the essential subgroup of the combined

transformations: Both the staggered-Wilson fermions are invariant under (4th-direction shift

with spatial axis reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (15)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown in section 3 of the

ref. [25]. Indeed, if we consider the theories on one- or two-flavor branches in the staggered-

Wilson fermions in the continuum limit, this transformation results in the usual parity as

ψ(p) → γ4ψ(−p, p4) for the Dirac fermion. Besides, by following the arguments in [27, 28] it

is also shown that the present actions still hold invariance under the parity transformation for

the 4-degenerate staggered fermion IsΞ4φ(−p, p4) = Γ4φ(−p, p4). Anyhow we can conclude

these fermion actions possess physically well-defined parity symmetry. We here note the

simple product of the µ-direction shift and the µ-direction axis reversal (shifted-axis reversal)

is also symmetry of both the fermions. The charge conjugation can be also shown to be

symmetry of these fermions by modifying the original charge conjugation transformation for

the case with the flavored-mass terms [25].

As is well-known, the usual “staggered hypercubic symmetry” means invariance under the

staggered rotation (11)(14) and the axis reversal (10)(13). Although both of the staggered-

Wilson fermions themselves do not have this symmetry, theories on the two- or one-flavor
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As shown in [25, 26], these transformations yield rotations in spinor
and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
the 16 species-fields in the momentum space as φ(p)A ≡ χ(p + πA) (−π/2 ≤
pµ < π/2) where πA (A = 1, 2, ..., 16) being 4-dim vectors whose compo-
nents take 0 or π. For convenience, we here consider a 16-multiplet field as
φ(p) = (φ(p)1,φ(p)2, · · · ,φ(p)16)T . As this 16-multiplet field has both the
spinor(space-time) and the flavor(taste) indices, we can construct the two
sets of generators acting on the spinor and flavor spaces respectively, which
are given by two sets of 16 × 16 matrices Γµ and Ξµ. We note they possess
the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using
these definitions the Dirac operator for the staggered fermion is given by
Dst = iΓµ sin pµ for the 16 multiplet φ(p) 1 while the shift transformation is
given by essentially flavor rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (13)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (14)

The rotational transformation is also given by both the spinor and flavor
rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (15)

C : φ(p) → φ̄(−p)T (16)

By using this representation, we can clearly figure out the properties of the
residual discrete symmetry of the staggered-Wilson fermions. What we here
want to emphasize is that the staggered-Wilson fermions are invariant under
the essential subgroup of the combined transformations: Both the staggered-
Wilson fermions are invariant under (4th-direction shift with spatial axis
reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (17)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown
in section 3 of the ref. [25]. Indeed, if we consider the theories on one- or

1The origin of the discrepancy between this form and the usual spin-taste representation
is clearly elaborated in the reference, G. P. Lepage, [arXiv:1111.2955].
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(2) Ξµ is called ”shift”, which is given by

Ξµ : χx → ζµχx+µ̂, µ̄x → ζµχ̄x+µ̂, Uµ,n → Uµ,n+µ̂, (22)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1. In spin-flavor
representation it forms ”flavor reflection” up to phase factor as

Ξµ : Q(p) → exp(ipµ)(1 ⊗ ξµ) Q(p). (23)

(3) Is is called ”spatial inversion”, which is given by

Is : χx → (−1)x1+x2+x3χx′ , χ̄x → (−1)x1+x2+x3χ̄x′ , Uµ,x → Uµ,x′ , (24)

where x′ ≡ Isx is xi → −xi, x4 → x4, (i = 1, 2, 3). In spin-flavor representation it gives
spin-flavor rotation by γ4 as

Is : Q(p) → (γ4 ⊗ ξ4) Q(p′). (25)

(4) Rµν is hypercubic rotation, which is given by

Rµν : χx → SR(x′)χx′ , χ̄x → SR(x′)χ̄x′ , Uµ,x → Uµ,x′ , (26)

where x′ ≡ R−1
µν x is xµ → xν , xν → −xµ, xρ → xρ, ρ %= µ, ν and SR(x) = 1

2 [1 ± ηµ(x)ην(x) ∓
ζµ(x)ζν(x) + ηµ(x)ην(x)ζµ(x)ζν(x)] with µ <> ν. In spin-flavor representation it gives spin-flavor
rotation as

Rµν : Q(p) → exp[
π

4
(γµγν ⊗ ξνξµ)]Q(p′). (27)

(5) U ε(1) is residual chiral symmetry, which is subgroup of SU(4) chiral symmetry in the
continuum theory. The transformation is given by

U ε(1) : χx → eθεxχx, χ̄x → χ̄xeθεx , Uµ,x → Uµ,x. (28)

(6) C ′
T is “special charge conjugation”, which is independent from (1). It is given by

C ′
T : χx → χ̄T

x , χ̄x → χT
x , Uµ,x → U∗

µ,x. (29)

Regarding flavor and rotation symmetries, we can rephrase them as

U ε(1) × (Γ4 ×|SW4,diag). (30)

Γ4 is a Clifford group operating as flavor reflection, which is formed by the shift Ξµ. SW4,diag

is diagonal part of hypercubic subgroups of euclidian rotation group SO(4) and flavor group
SU(4). It causes simultaneous hypercubic rotation in Lorentz and flavor spaces. From this we
can elucidate splitting of pion spectrum at finite lattice spacing. Pions are degenerate and form
a 15-plet of flavor SU(4) in the continuum:

Q̄(γ5 ⊗ ξA)Q, with ξA = ξA1
1 ξA2

2 ξA3
3 ξA4

3 , (31)
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Details of StWil symmetries

Physical-sector symmetry

Ξ�
jΞ

�
4R

2
j4 = ΞjΞ4 ∼ (1⊗ σj)

Ξ�
4R

2
34R

2
12 = Ξ4Is ∼ (γ4 ⊗ 1)

C0Ξ�
2Ξ

�
4R

2
24 ∼ C

{Ξµ, Is, Rµν} → Γ4 � SW4

{Ξ�
µ, Rµν} → Γ3 � SW4



Ξ2
µ = 1

Details of timeslice symmetries

Enlarged staggered sym :

Timeslice sym :

{C0,Ξµ, Is, Rµν , T 1/2
µ }

Relevant group at rest

Γ4,1 � W3 ∼ [{Rij ,Ξij}× {C0,Ξ4,Ξ123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞkj}× {C0,Ξ4,Ξ123, C0Ξ4Is}]/Z2

= [SW4 × Γ2,2]/Z2

T 1/2
µ � [{C0,Ξµ} � {Rij , Is}] = (⊗jZNj ) � [Γ4,1 � W3]

T 1/2
µ � [{C0,Ξµ} � {Rµν , Is}] = (⊗jZNµ) � [Γ4,1 � W4]

{C0,Ξ�
µ, Rµν , T �1/2

µ }
Staggered-Wilson

∼ [{Rij ,Ξ�
ij}× {C0,Ξ�

4,Ξ
�
123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞ�
kj}× {C0,Ξ�

4,Ξ
�
123]/Z2

= [SW4 × Γ1,2]/Z2



Dim3, 4 :

Dim5 O(a):

Dim6 O(a ) : 2 types of four-fermi operators

No unphysical term nor taste-breaking term up to O(a)

Q̄(γµ ⊗ ξF )DµQ for ξF = 1 or ξ5 �̄γµDµ�, �̄�

�̄iσµνFµν�Q̄(iσµνFµν ⊗ ξF )Q for ξF = 1 or ξ5

Q̄(1⊗ ξF )Q

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6
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two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by
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heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by
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which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by
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which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
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Here we denote VFF (A)
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As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
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