Status and challenges of simulations with dynamical fermions

Stefan Schaefer

Lattice 2012

sieidh schueiei	Ste	fan	Sch	naei	fer
-----------------	-----	-----	-----	------	-----

Progress

Typical simulation 2002

- $\blacksquare L = 1.8\,{
 m fm}$
- *a* = 0.09 fm
- $\blacksquare m_\pi pprox 600\,{
 m MeV}$

Typical simulation 2012

- $L = 3 \, \mathrm{fm}$
- *a* = 0.06 fm
- $\blacksquare m_\pi pprox 250\,{
 m MeV}$

Progress

Typical simulation 2002

- $\blacksquare L = 1.8\,{
 m fm}$
- *a* = 0.09 fm
- $\blacksquare m_\pi pprox 600\,{
 m MeV}$

Typical simulation 2012

•
$$L = 3 \text{ fm} \dots \text{ and up}$$

• $a = 0.06 \text{ fm} \dots \text{ down to } 0.045 \text{ fm}$
• $m_\pi \approx 250 \text{ MeV} \dots \text{ down to } m_\pi = m_\pi^{ ext{phys}}$

Techniques

Update algorithms

- determinant splitting
- better-than-leapfrog integrators

Solvers

- Iocal deflation
- multigrid

Computers

Computers have become faster.

Update Algorithms

Theme: Choose the right action

Stefan Schaefer

Generalities

All large scale simulations use the Hybrid Monte Carlo. DUANE ET AL'87

■ Variants from specific action during trajectory. → Representation of quark determinant.

Guide for improvement

- Frequency splitting.
- Determinant estimate.

Update algorithms

Molecular dynamics

Hamiltonian equations of motion

$$\dot{\pi}=-rac{\delta S}{\delta U}$$
 and $\dot{U}=\pi$

 \blacksquare Conventional wisdom: Large Forces \Rightarrow Small step size

- Fluctuations of force more important.
- Influences choice of S.

Fermions

Pseudofermions

PETCHER, WEINGARTEN'81

$$\det Q^2 \propto \int \! \mathrm{d} \phi \, e^{-(\phi, \, Q^{-2} \phi)}$$

HMC + single pseudofermion action not successfulCompare

 $F_{
m pf} = \delta(\phi,\,Q^{-2}\phi) \qquad {
m and} \qquad F_{
m ex} = -\delta{
m tr}\,\log\,Q^2$

• $F_{
m pf}$ is "stochastic estimate" of $F_{
m ex}$ At beginning of the trajectory $\langle F_{
m pf} \rangle_{\phi} = F_{
m ex}$

Very large fluctuations in F_{pf}

$$|F_{
m pf}| \gg |F_{
m ex}|$$

Determinant Splitting

- Each determinant represented by pseudo-fermion
- "Pauli-Villars" for fermion force
- **\blacksquare** more intermediate $\mu \rightarrow$ Noise reduction in force.
- **success depends on choice of** μ . Urbach et al'04

Stefan Schaefer

Numerical examples

Action

- \blacksquare $N_{
 m f}=2+1$ NP improved Wilson fermions
- Iwasaki gauge action
- 64×32^3 lattice with a = 0.09 fm
- studied extensively by PACS-CS

```
Aoki et al'09,'10
```

• $m_{\pi} = 200 \text{MeV}$

 $\blacksquare m_{\pi}L = 3$

Algorithm

M. LÜSCHER, S.S.'12

- Reweighting to avoid stability problems.
- Generated with new public openQCD code. http://cern.ch/luscher/openQCD

Effect of determinant factorization

Forces for light quark, 20 configurations. $\mu_1 = 0.05, \mu_2 = 0.5$

Fluctuations in norm squared of force.
 Spread reduced by more than factor 100.
 (Different scale!)

Stefan Schaefer

Understanding the improvement

Framework

CLARK, JOO, KENNEDY, SILVA'11

Shadow Hamiltonian of symplectic integrators

 $\tilde{H} = H + (c_1 \partial_a S \partial_a S - c_2 \pi_a \pi_b \partial_a \partial_b S) \delta \tau^2 + \dots$

• c_1 and c_2 depend on integrator.

- Large cancellation between the two terms \rightarrow potential for optimization.
- 2nd order minimum norm integrators: minimum of $c_1^2 + c_2^2$ OMELYAN, MRYGOLD, FOLK'03
- Symplectic integrators profit from reduced fluctuations in norm of force.

Numerical examples

- $\Delta H = \tilde{H} H$, fermions only.
- Second order min. norm Omelyan integrator.
- Much larger step-size possible.

Other decompositions

RHMC

$\det Q^2 = \prod_{i=1}^n \det \sqrt[n]{Q^2}$

HORVATH ET AL'00, CLARK, KENNEDY'07

- Primary use: single flavors
- Splitting in equal factors
- Need *n*-th root function \rightarrow rational approximation

DD-HMC

LÜSCHER'04

- Domain decomposition
- Divide the lattice in blocks
- Inactive links
 - \rightarrow longer autocorrelations

Reweighting

Problem

■ Wilson fermions do not have solid spectral gap.

■ Affects stability of the algorithm. → large fluctuations in forces ("spikes").

Basic idea

FERRENBERG, SWENDSEN'88

- Action S_0 inconvenient in simulations.
- Simulate different action S_1 .
- Include correction factor in measurement.

$$\langle A
angle_0 = rac{\langle A \; e^{-(S_0-S_1)}
angle_1}{\langle e^{-(S_0-S_1)}
angle_1}$$

Stability of Wilson fermion simulations

Iwisted mass reweighting	Lüscher, Palombi'09
Simulate with finite action	
$\det Q^2 o egin{cases} \det(Q^2+\mu^2) \ \det(Q^2+\mu^2)^2/\det(Q^2+\mu^2)^2 \end{pmatrix}$	Type I $\vdash 2\mu^2)$ Type II

Include reweighting factor in measurement.

Ensures that all sectors of field space can be reached.

Example

2+1 improved Wilson fermions, Iwasaki gauge

$$\blacksquare L=2.9\,{
m fm}$$
 , $m_{\pi}=200\,{
m MeV}$

 $\blacksquare \ \mu \approx Z_A m_q$

PLOT: LÜSCHER, S.S.'12

SEE ALSO MIAO ET AL'11

Reweighting factor well behaved.

Stefan Schaefer

Further Applications

- Corrections in quark mass tuning
- QED effects

Low mode sampling efficiency

PACS-CS, RBC TALK BY IZUBUSHI HASENFRATZ ET AL'08

Solvers

Theme: Block decomposition

Stefan Schaefer

Solution of the Dirac equation

$$(D+m)\psi = \phi$$

- Most expensive part of simulation.
- Traditional solvers(CG,...) inefficient as $m \rightarrow 0$.
- Essential to treat low-energy part of spectrum separately.

Block methods

 Successful methods: block decomposition
 Schwarz Alternating Procedure
 Löscher 04 TALK BY ISHIKAWA
 Local deflation
 Adaptive multigrid (groups in Boston and Wuppertal)
 FROMMER ET AL 12

Example: Local deflation

PLOT: M. LÜSCHER, JHEP 0707 (2007) 081

- Critical slowing down almost absent for defl. solver.
- Deteminant split-up needs multiple solves per gauge field → solver's setup cost negligible.

Stefan Schaefer

Summary: Light quark simulations

QCD in the chiral regime

- Simulations at physically light quark masses possible → PACS-CS, BMW, ...
- Combination of several improvements
 - Better treatment of quark determinant → split in several contributions
 - Advanced solvers (local deflation, multigrid)
 Setup cost easily amortized over multiple solutions.
 - Improved integrators profit from reduced fluctuations. →4th order/force gradient integrators
- Wilson fermions have particularly profited.
- Tool to argue about performance.

CONTINUUM LIMIT

Continuum limit

Cost of a simulation

For 2nd order integrator

$${\rm cost} \propto (V/a^4)^{5/4} \cdot a^{-z}$$

 V/a^4 number of lattice points $V^{0.25}/a$ step size for constant acceptance

dynamical critical exponent z of algorithm (approaching continuous phase transition)

- Number of points inevitable
- Noise reduction as $a \rightarrow 0$.
- How does Monte Carlo time behave as $a \rightarrow 0$?
- HMC in Langevin universality class Lüscher, S.S.'11

 $\Rightarrow \quad z=2$

 \boldsymbol{z}

Autocorrelation time

Autocorrelation function

$$\Gamma(\tau) = \langle (\boldsymbol{A}(\tau) - \overline{\boldsymbol{A}}) (\boldsymbol{A}(\boldsymbol{0}) - \overline{\boldsymbol{A}}) \rangle$$

Integrated Autocorrelation Time

$$\tau_{\rm int}({\pmb A}) = \int_{-\infty}^\infty {\bf d}\tau\,\rho(\tau) \quad {\rm with} \quad \rho(\tau) = \frac{\Gamma(\tau)}{\Gamma({\pmb 0})}$$

Stefan Schaefer

Observed scaling: Pure gauge theory

SOMMER, VIROTTA, S.S.'10

see also Del Debbio et al'02, Lüscher'10

- Pure gauge theory, Wilson action, $L = 2.4 \, \mathrm{fm}$
- 1fm imes 1fm Wilson loop $o au_{
 m int} \propto a^{-0.8}$
- \blacksquare Topological charge $Q^2
 ightarrow au_{
 m int} \propto a^{-5}$

Stefan Schaefer

Observed scaling: Pure gauge theory

Sommer, Virotta, S.S.' 10 see also Del Debbio et al'02, Lüscher' 10

- Even in pure gauge theory, measurements below 0.05 fm difficult
- Does not match z = 2 expectation.

Stefan Schaefer

Autocorrelations: Fermions

N_f = 2 improved Wilson fermions, Wilson gauge action
 For a < 0.05 fm, Q² slower than other observables.

Topological charge

$$m{Q} = -rac{a^4}{32\pi^2}\int \mathrm{d}\,x\,\epsilon_{\mu
u
ho\sigma}\,\mathrm{tr}\,F_{\mu
u}F_{
ho\sigma}$$

- In continuum limit, disconnected **topological sectors**.
- Consequence of periodic boundary conditions.
- Simulations stuck in one sector.

Topological charge

■ Tunneling is a cut-off effect.

- The probability of configurations "in between" sectors drops rapidly as $a \rightarrow 0$: Roughly with a^{-6} in fixed volume. M. LÜSCHER, '10
- All quasi continuous algorithms affected. Independent of the lattice action.
- Insufficient sampling of field space, prevents simulations on fine lattices.

Solutions I

Fixed topological charge

- Modify action so that algorithm does not change Q.
- Deal with finite volume effects

BROWER ET AL'03

$$\langle A
angle_{Q=Q_0} = \langle A
angle \cdot \{1 + rac{c_{Q_0}}{V} + \dots)\}$$

Theory no longer unitary.

■ Used by JLQCD in the dynamical overlap project.

Solutions II

Open boundary conditions

M. LÜSCHER, S.S. 2011

- open boundary condition in time direction → same transfer matrix, same particle spectrum
- periodic boundary condition in spatial directions → momentum projection possible
- Charge can flow over temporal boundaries.
- Field space connected also in the continuum.

Open boundary conditions

• Lattices of size $T \times L^3$.

- Neumann boundary conditions in time.
- Fermions like Schrödinger functional

Gauge fields

$$F_{0k}|_{x_0=0} = F_{0k}|_{x_0=T} = 0, \quad k = 1, 2, 3$$

Fermion fields

$$egin{aligned} P_+\psi(x)|_{x_0=0} &= P_-\psi(x)|_{x_0=T} &= 0 \ ar{\psi}(x)P_-|_{x_0=0} &= ar{\psi}(x)P_+|_{x_0=T} &= 0 \end{aligned}$$

STUDYING AUTOCORRELATIONS

Smooth observables with continuum limit

Gradient flow

LÜSCHER'10, LÜSCHER&WEISZ'11

\blacksquare Smoothing with **gradient flow** with flow time t

 $\partial_t V_t(x,\mu) = -g_0^2 \left[\partial_{x,\mu} S(V_t)\right] V_t(x,\mu); \quad V_t(x,\mu)|_{t=0} = U(x,\mu)$

- Gaussian smoothing over $r \sim \sqrt{8t}$.
- "continuous stout smearing" with physical range
- Renormalized quantities with continuum limit.
- Good tool to reveal slow modes of simulation.

Observables

$$\partial_t V_t(x,\mu) = -g_0^2 \left[\partial_{x,\mu} S(V_t) \right] V_t(x,\mu); \quad V_t(x,\mu)|_{t=0} = U(x,\mu)$$

$$ar{E}(x_0) = -rac{a^3}{2V}\sum_{ec{x}}\mathrm{tr}\,G_{\mu
u}G_{\mu
u}
onumber \ \overline{Q}(x_0) = -rac{a^3}{32\pi^2}\sum_{ec{x}}\epsilon_{\mu
u
ho\sigma}\mathrm{tr}\,G_{\mu
u}G_{
ho\sigma}
onumber \ Q = -rac{a^4}{32\pi^2}\sum_{ec{x}}\epsilon_{\mu
u
ho\sigma}\mathrm{tr}\,G_{\mu
u}G_{
ho\sigma}$$

■ $G_{\mu\nu}$: field strength tensor constructed from V_t ■ Define t_0 for smoothing radius $r \approx r_0 = 0.5$ fm

$$t^2 \langle \overline{E}
angle_{t=t_0} = 0.3$$

Stefan Schaefer

Effect of the smoothing

Autocorrelation time of \overline{E} vs. smoothing range (a=0.05fm).

• $\sqrt{8t}$ smoothing radius $\rightarrow t = t_0$ smoothing over $r \approx r_0$ • τ_{int} saturates with $\tau_{\text{int}} = 93 + ae^{-c/t}$.

Stefan Schaefer

TEST OF OPEN BOUNDARY CONDITIONS

Theme: They work as expected.

Stefan Schaefer

Scaling towards continuum limit: $au_{ m int}$ vs a^{-2}

- Pure gauge theory, Wilson gauge action, L = 1.6 fm.
- $\tau_{\rm int}$ for all observables linear in a^{-2} .
- Moderate autocorrelation times.

Dynamical simulations

Action

- lacksquare $N_{
 m f}=2+1$ NP improved Wilson fermions
- Iwasaki gauge action
- 64×32^3 lattice with a = 0.09 fm
- $\blacksquare L pprox 2.9\,{
 m fm}$

$$\blacksquare m_{\pi} = 200 {
m MeV}; m_{\pi}L = 3$$

- Wilson flow time $t = t_0$
- Smoothing radius $r = \sqrt{8t} \approx 0.5$ fm.
- Correlation length $1/(am_{\pi}) \approx 11$
- \blacksquare Plateau starting $\sim 1\,\text{fm}$ from boundary.

Fermions and open boundary conditions

Chiral perturbation theory with Dirichlet b.c.

 $G(x_0, y_0) \propto \sinh(m(T - x_0)) \sinh(my_0)$ for $y_0 < x_0$

 \blacksquare Valid if sufficiently away from boundary ($\approx 0.5\, \text{fm}$).

Stefan Schaefer

Summary: Algorithms

Current state

Combination of several innovations

- Quark determinant factorization reduces noise in forces.
- Advanced solvers.
 Setup cost amortized over several solutions.
- Advanced MD integrators profit from stable forces.

Methods are widely used and work for most actions.

Summary: Continuum limit

Scaling

 Molecular dynamics based algorithms: MD time scales with 1/a².

Topological charge

- **Topological charge freezes as** $a \rightarrow 0$.
- Property of continuum theory.
- All discretizations affected.
- Open boundary conditions solve this problem: Field space connected in continuum.

More examples for open B.C. \rightarrow Talk by A. Ramos

What can we expect?

Experience

Improved Wilson fermions, Iwasaki gauge action.

- $64 imes 32^3$ lattice, a = 0.09 fm
- lacksquare physical light and strange quark mass, $m_\pi L=2$
- $\blacksquare \ \tau_{\rm int}(E) \sim {\rm O}(20)$

Estimate

- Twice larger lattice for $m_{\pi}L = 4$, $L \approx 6$ fm.
- Run length $100 \cdot \tau_{\text{int}}(E) = 2000 \cdot (a/0.09 \text{fm})^{-2}$.

$$cost = 3 T flops \cdot years \cdot (a/0.09 fm)^{-7}$$

■ a = 0.045 fm still cost 400 Tflops years.