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Progress

Typical simulation 2002

L = 1.8 fm
a = 0.09 fm
mπ ≈ 600 MeV

Typical simulation 2012

L = 3 fm
a = 0.06 fm
mπ ≈ 250 MeV
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Progress

Typical simulation 2002

L = 1.8 fm
a = 0.09 fm
mπ ≈ 600 MeV

Typical simulation 2012

L = 3 fm . . . and up
a = 0.06 fm . . . down to 0.045 fm
mπ ≈ 250 MeV . . . down to mπ = mphys

π
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Techniques

Update algorithms

determinant splitting
better-than-leapfrog integrators

Solvers

local deflation
multigrid

Computers

Computers have become faster.
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UPDATE ALGORITHMS

Theme: Choose the right action
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Generalities

All large scale simulations use the Hybrid Monte Carlo.
DUANE ET AL’87

Variants from specific action during trajectory.
→Representation of quark determinant.

Guide for improvement

Frequency splitting.
Determinant estimate.
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Update algorithms

Molecular dynamics

Hamiltonian equations of motion

π̇ = − δS
δU

and U̇ = π

Numerical solution
Force
Field

Conventional wisdom:
Large Forces⇒ Small step size

Fluctuations of force more important.
Influences choice of S.
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Fermions

Pseudofermions PETCHER, WEINGARTEN’81

det Q2 ∝
∫

dφ e−(φ,Q−2φ)

HMC + single pseudofermion action not successful
Compare

Fpf = δ(φ, Q−2φ) and Fex = −δtr log Q2

Fpf is “stochastic estimate” of Fex
At beginning of the trajectory 〈Fpf〉φ = Fex

Very large fluctuations in Fpf

|Fpf| � |Fex|
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Determinant Splitting

Insight

Need better estimate of determinant.
Frequency splitting.

Mass preconditioning HASENBUSCH’01, HASENBUSCH,JANSEN’03

det Q2 = det
Q2

Q2 + µ2 det(Q2 + µ2)

Each determinant represented by pseudo-fermion
“Pauli-Villars” for fermion force
more intermediate µ→ Noise reduction in force.
success depends on choice of µ. URBACH ET AL’04
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Numerical examples

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64× 323 lattice with a = 0.09fm
studied extensively by PACS-CS AOKI ET AL’09,’10

mπ = 200MeV
mπL = 3

Algorithm M. LÜSCHER, S.S.’12

Reweighting to avoid stability problems.
Generated with new public openQCD code.
http://cern.ch/luscher/openQCD
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Effect of determinant factorization

Forces for light quark, 20 configurations.
µ1 = 0.05, µ2 = 0.5

 4  5  6  7  8

|F|2/link

1PF

 4.2  4.25  4.3  4.35  4.4

|F|2/link

3PF

Fluctuations in norm squared of force.
Spread reduced by more than factor 100.
(Different scale!)

Stefan Schaefer Dynamical simulations Lattice 2012 10 / 43



Understanding the improvement

Framework CLARK, JOO, KENNEDY, SILVA’11

Shadow Hamiltonian of symplectic integrators

H̃ = H + (c1 ∂aS∂aS− c2 πaπb∂a∂bS)δτ2 + . . .

c1 and c2 depend on integrator.
Large cancellation between the two terms
→ potential for optimization.

2nd order minimum norm integrators:
minimum of c2

1 + c2
2 OMELYAN, MRYGOLD, FOLK’03

Symplectic integrators profit from reduced
fluctuations in norm of force.
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Numerical examples

-100000  0  100000

(∆H-<∆H>)/(δτ)2

1PF

-1000  0  1000

(∆H-<∆H>)/(δτ)2

3PF

∆H = H̃ −H, fermions only.
Second order min. norm Omelyan integrator.
Much larger step-size possible.
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Other decompositions

RHMC HORVATH ET AL’00, CLARK, KENNEDY’07

det Q2 =
n∏

i=1

det n
√

Q2
Primary use: single flavors
Splitting in equal factors
Need n-th root function
→ rational approximation

DD-HMC LÜSCHER’04

Domain decomposition
Divide the lattice in blocks
Inactive links
→ longer autocorrelations
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Reweighting

Problem

Wilson fermions do not have solid spectral gap.
Affects stability of the algorithm.
→ large fluctuations in forces (“spikes”).

Basic idea FERRENBERG, SWENDSEN’88

Action S0 inconvenient in simulations.
Simulate different action S1.
Include correction factor in measurement.

〈A〉0 =
〈A e−(S0−S1) 〉1
〈e−(S0−S1)〉1
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Stability of Wilson fermion simulations

Twisted mass reweighting LÜSCHER, PALOMBI’09

Simulate with finite action

det Q2 →

{
det(Q2 + µ2) Type I
det(Q2 + µ2)2/det(Q2 + 2µ2) Type II

Include reweighting factor in measurement.
Ensures that all sectors of field space can be reached.
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Example

2+1 improved Wilson fermions, Iwasaki gauge
L = 2.9 fm, mπ = 200 MeV
µ ≈ ZAmq

PLOT: LÜSCHER, S.S.’12
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R

iconf

SEE ALSO MIAO ET AL’11

Reweighting factor well behaved.
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Reweighting

Further Applications

Corrections in quark mass tuning PACS-CS, RBC

QED effects TALK BY IZUBUSHI

Low mode sampling efficiency HASENFRATZ ET AL’08
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SOLVERS

Theme: Block decomposition
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Solution of the Dirac equation

(D + m)ψ = φ

Most expensive part of simulation.
Traditional solvers(CG,. . . ) inefficient as m→ 0.
Essential to treat low-energy part of spectrum
separately.

Block methods

Successful methods: block decomposition
Schwarz Alternating Procedure LÜSCHER’04

TALK BY ISHIKAWA

Local deflation LÜSCHER’07
Adaptive multigrid BABICH ET AL’10
(groups in Boston and Wuppertal) FROMMER ET AL’12

Stefan Schaefer Dynamical simulations Lattice 2012 19 / 43



Example: Local deflation

PLOT: M. LÜSCHER, JHEP 0707 (2007) 081
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(amval)−1
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400
t [sec]

mval = msea mval ∼ 6
1msmval ∼ ms

EO+BiCGstab

SAP+GCR

DFL+SAP+GCR

Critical slowing down almost absent for defl. solver.
Deteminant split-up needs multiple solves per gauge
field→ solver’s setup cost negligible.

Stefan Schaefer Dynamical simulations Lattice 2012 20 / 43



Summary: Light quark simulations

QCD in the chiral regime

Simulations at physically light quark masses possible
→ PACS-CS, BMW, . . .
Combination of several improvements

Better treatment of quark determinant
→ split in several contributions
Advanced solvers (local deflation, multigrid)
Setup cost easily amortized over multiple solutions.
Improved integrators profit from reduced fluctuations.
→4th order/force gradient integrators

Wilson fermions have particularly profited.
Tool to argue about performance.

Stefan Schaefer Dynamical simulations Lattice 2012 21 / 43



CONTINUUM LIMIT
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Continuum limit

Cost of a simulation

For 2nd order integrator

cost ∝ (V/a4)5/4 · a−z

V/a4 number of lattice points
V0.25/a step size for constant acceptance
z dynamical critical exponent z of algorithm

(approaching continuous phase transition)

Number of points inevitable
Noise reduction as a→ 0.
How does Monte Carlo time behave as a→ 0?
HMC in Langevin universality class LÜSCHER, S.S.’11
⇒ z = 2
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Autocorrelation time

 4.2

 4.4

 4.6

 4.8

 0  2000  4000  6000

t 0

τ[MD time]

Autocorrelation function

Γ(τ) = 〈(A(τ)− A)(A(0)− A)〉

Integrated Autocorrelation Time

τint(A) =
∫ ∞
−∞

dτ ρ(τ) with ρ(τ) =
Γ(τ)
Γ(0)
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Observed scaling: Pure gauge theory

 1
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 10000

0.14fm 0.1fm 0.07fm 0.05fm

τ in
t

a

Q2

W(1fm)

z=5

z=0.8

SOMMER, VIROTTA, S.S.’10
SEE ALSO DEL DEBBIO ET AL’02, LÜSCHER’10

Pure gauge theory, Wilson action, L = 2.4 fm
1fm× 1fm Wilson loop→ τint ∝ a−0.8

Topological charge Q2 → τint ∝ a−5
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Observed scaling: Pure gauge theory

 1
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τ in
t

a

Q2

W(1fm)

z=5

z=0.8

SOMMER, VIROTTA, S.S.’10
SEE ALSO DEL DEBBIO ET AL’02, LÜSCHER’10

Even in pure gauge theory, measurements below
0.05 fm difficult
Does not match z = 2 expectation.
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Autocorrelations: Fermions

DATA: F. VIROTTA, CLS

 0
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 0.4
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 1

 0  50  100  150

ρ(
t)

t (a/0.049fm)2[MD time]

Q

a=0.049fm
a=0.066fm
a=0.076fm

Nf = 2 improved Wilson fermions, Wilson gauge action
For a < 0.05 fm, Q2 slower than other observables.
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Topological charge

Q = − a4

32π2

∫
d x εµνρσ tr FµνFρσ

In continuum limit, disconnected topological sectors.
Consequence of periodic boundary conditions.
Simulations stuck in one sector.

Q=−1

Q=0

Q=1

Q=2
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Topological charge

Tunneling is a cut-off effect.
The probability of configurations “in between” sectors
drops rapidly as a→ 0:
Roughly with a−6 in fixed volume. M. LÜSCHER, ’10

All quasi continuous algorithms affected.
Independent of the lattice action.
Insufficient sampling of field space,
prevents simulations on fine lattices.

Q=−1

Q=0

Q=1

Q=2
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Solutions I

Fixed topological charge

Modify action so that algorithm does not change Q.
Deal with finite volume effects BROWER ET AL’03

〈A〉Q=Q0 = 〈A〉 · {1 +
cQ0

V
+ . . . )}

Theory no longer unitary.
Used by JLQCD in the dynamical overlap project.
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Solutions II

Open boundary conditions M. LÜSCHER, S.S. 2011

open boundary condition in time direction
→ same transfer matrix, same particle spectrum
periodic boundary condition in spatial directions
→momentum projection possible
Charge can flow over temporal boundaries.
Field space connected also in the continuum.
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Open boundary conditions

Lattices of size T × L3.
Neumann boundary conditions in time.
Fermions like Schrödinger functional

Gauge fields

F0k|x0=0 = F0k|x0=T = 0, k = 1,2,3

Fermion fields

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0 P± =
1
2

(1± γ0)

ψ̄(x)P−|x0=0 = ψ̄(x)P+|x0=T = 0
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STUDYING AUTOCORRELATIONS

Smooth observables with continuum limit
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Gradient flow

LÜSCHER’10, LÜSCHER&WEISZ’11

Smoothing with gradient flow with flow time t

∂tVt(x, µ) = −g2
0 [∂x,µS(Vt)] Vt(x, µ); Vt(x, µ)|t=0 = U(x, µ)

Gaussian smoothing over r ∼
√

8t.
“continuous stout smearing” with physical range
Renormalized quantities with continuum limit.
Good tool to reveal slow modes of simulation.

r r=  8t
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Observables

∂tVt(x, µ) = −g2
0 [∂x,µS(Vt)] Vt(x, µ); Vt(x, µ)|t=0 = U(x, µ)

E(x0) = − a3

2V

∑
~x

tr GµνGµν

Q(x0) = − a3

32π2

∑
~x

εµνρσtr GµνGρσ

Q = − a4

32π2

∑
x
εµνρσtr GµνGρσ

Gµν : field strength tensor constructed from Vt
Define t0 for smoothing radius r ≈ r0 = 0.5 fm

t2〈E〉t=t0 = 0.3
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Effect of the smoothing

Autocorrelation time of Ē vs. smoothing range (a=0.05fm).

0 0.2 0.4 0.6 0.8 1 1.2
t/t0

0

20

40

60

80

100
τint

√
8t smoothing radius→ t = t0 smoothing over r ≈ r0

τint saturates with τint = 93 + ae−c/t.
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TEST OF OPEN BOUNDARY CONDITIONS

Theme: They work as expected.
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Scaling towards continuum limit: τint vs a−2
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SMD algorithm scale τint with 1.37 for HMC.

Pure gauge theory, Wilson gauge action, L = 1.6 fm.
τint for all observables linear in a−2.
Moderate autocorrelation times.
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Dynamical simulations

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64× 323 lattice with a = 0.09 fm
L ≈ 2.9 fm
mπ = 200MeV; mπL = 3

Stefan Schaefer Dynamical simulations Lattice 2012 38 / 43



Effect of the boundary: gauge observables

10 15 20 25 30 35 40 45 50 55

x0

0.036

0.038

0.040

0.042

〈E(x)〉

Wilson flow time t = t0

Smoothing radius r =
√

8t ≈ 0.5 fm.
Correlation length 1/(amπ) ≈ 11
Plateau starting ∼ 1 fm from boundary.
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Fermions and open boundary conditions

 1e-05

 0.0001

 0.001

 0.01

 10  20  30  40  50  60
x0/a

Gπ(x0,1)

source at y0/a = 1

Chiral perturbation theory with Dirichlet b.c.

G(x0, y0) ∝ sinh(m(T − x0)) sinh(my0) for y0 < x0

Valid if sufficiently away from boundary (≈ 0.5 fm).
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Summary: Algorithms

Current state

Combination of several innovations
Quark determinant factorization reduces noise in
forces.
Advanced solvers.
Setup cost amortized over several solutions.
Advanced MD integrators profit from stable forces.

Methods are widely used and work for most actions.
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Summary: Continuum limit

Scaling

Molecular dynamics based algorithms:
MD time scales with 1/a2.

Topological charge

Topological charge freezes as a→ 0.
Property of continuum theory.
All discretizations affected.
Open boundary conditions solve this problem:
Field space connected in continuum.

MORE EXAMPLES FOR OPEN B.C.→TALK BY A. RAMOS
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What can we expect?

Experience

Improved Wilson fermions, Iwasaki gauge action.
64× 323 lattice, a = 0.09 fm
physical light and strange quark mass, mπL = 2
τint(E) ∼ O(20)

Estimate

Twice larger lattice for mπL = 4, L ≈ 6 fm.
Run length 100 · τint(E) = 2000 · (a/0.09fm)−2.

cost = 3 Tflops · years · (a/0.09fm)−7

a = 0.045 fm still cost 400 Tflops·years.
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