BlueGene/Q

Peter Boyle University of Edinburgh

June 29, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

- The design challenge
- BlueGene/Q¹
 - Architecture
 - Optimising for BlueGene/Q
 - Performance
- Competitive position

 1 Will perform analysis by subsystem over floating point, memory, and network $ightarrow \langle \bigcirc
ightarrow \langle \ge
ightarrow \langle >
ightarrow \langle >$

Wilson Dirac Operator

Usual Wilson matrix is

$$D_W(M) = M + 4 - rac{1}{2}D_{
m hop},$$

where

$$D_{\rm hop} = (1 - \gamma_{\mu}) U_{\mu}(x) \delta_{x+\mu,y} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(y) \delta_{x-\mu,y}$$
(1)

Dirac equation is a classic sparse matrix problem

- · Geometrical decomposition on multiple nodes
- Messages representing halos communicated between nodes
- 4d-Torus communications pattern
- Cost ~ O(L¹¹) − O(L¹³) ⇒ strong scaling requirement
- Will focus on 5d overlap/dwf formulations with D_W as building block

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

(Simplified) Wilson matrix performance analysis

Model time to apply Wilson operator as $t_{Wilson} = Max\{t_{comm}, t_{fpu}, t_{memory}, t_{cache}\}$

Wilson operator D_W

- $2 \times 24L^4$ words to memory
- $9 \times 24L^4$ words to cache ²
- $16 \times 12L^3$ words bidi comms

FPU

• $1320 \times L^4$ flops: 480 MADDS, 96 MULS, 264 ADDS

Challenge: design network and memory bandwidth so t_{cache} , t_{comm} , $t_{memory} \approx t_{fpu}$

Assumptions

- When coded right these will take place concurrently. The longest will determine time
- loop order will maximise cache reuse; count compulsory memory traffic
- Inverter working set does not fit in cache; 8x reuse in sparse matrix
- Ignore gauge field U_µ as high L1 reuse in DWF and overlap fermions
- Note: including preconditioning does not change analysis if we use 2L imes L³

² "cache" really means the highest level of memory at which reuse can occur. This may be some form of local memory on certain systems.

How fast can a computer go?

 $B_N/B_M/B_C$ are Network/Memory/Cache bandwidths (fp words/sec)

• Scalability limited when t_{comm} large \Rightarrow minimum sensible local volume L_{min}

$$\begin{array}{ll} t_{comm} \leq t_{cache} & \Longleftrightarrow & \frac{192L^3}{B_N} \leq \frac{216L^4}{B_C} \\ \Rightarrow & L_{min} \sim \frac{B_C}{B_N} \end{array}$$

- D_W scalability determined by ratio of network bandwidth to cache & memory bandwidth ³
- Maximum performance on a given total problem size N then determined by L_{min}. e.g.

$$\mathrm{Performance} \sim \frac{1320 \times N^4}{t_{comm}} = \frac{1320 \times N^4 B_N^4}{192 \times B_C^3}$$

• Maximum performance and scalability fall as fourth power of network bandwidth.

³or floating point processing rate – whichever is rate limiter – usually bandwidth $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

An example

• Consider 64⁴ on an nominal 100Gflop/s node

$\frac{B_C}{B_N}$	Number of nodes	Max System Performance
32	16	1.6Tflop/s
16	256	25.6 Tflop/s
8	4096	409.6 Tflop/s
4	64k	6 Pflop/s
2	1M	96 Pflop/s

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

• Conclusion: integrate network controller in the memory system so that $B_N \sim {\cal O}(B_C)$

Machines: BlueGene/Q

BlueGene/Q overview

- 45nm, 360mm², 1.6GHz, 55W
- 16 \times PowerPC 64 bit compute cores (+1 O/S +1 yield)
- 16 KB L1 data cache, 4KB L1p prefetch engine, 32 MB L2 cache
- 16GB DDR3 1333 memory (dual controller : 2 × 128 bit I/F)
- 4 threads per core, 64 threads per chip
- Quad double precision short vector (SIMD) fpu Can operate as twin complex arithmetic fpu 8 floating point operations per clock cycle if z = ax + y 4 floating point operations per clock cycle if z = x + y 4 floating point operations per clock cycle if z = x * y Wilson is limited to 78% of peak
- FP/Memory/Network bandwidths

GFlop/s	L1 GB/s	L2 GB/s	DDR GB/s	Torus GB/s
204.8	820GB/s	563(448)	42.7	40

- SoC integrates huge cache, huge MPI bandwidth (\equiv O(10) Mellanox cards) within modest area and power budget
 - \Rightarrow scalable and power efficient

Edinburgh/Columbia/IBM Collaboration

- Dec 2007 IBM Research, Edinburgh U., Columbia U. formed a collaboration agreement to jointly develop next generation of BlueGene.
- 2007-2011 PAB (UoE), Christ (CU), and Changhoan Kim (CU, now IBM) designed adaptive memory prefetch engine (L1P) as contractors. VHDL logic design, clock tree, test structures, timing closure and placement
 - QCD assembler and hardware prefetcher jointly developed
 → The design element of codesign is truly important

Can you find L1p in the next slide's die photo?

BlueGene/Q die photo

= nac

BlueGene/Q processor core

- Most processors in the world spend 95% of their time idle stalled on memory
- If fetch independent instructions from another thread they can be executed
- · Replicate instruction fetch, register files. Share the big functional units

· QPX loads, stores and operates on four consecutive double prec. words in parallel

SIMD optimisation

QPX supports paired complex SIMD operations (quad double)

- Develop BAGEL domain specific compiler for BG/Q QPX support
- Remember why SIMD was easy on the Connection Machine!
 - Subdivide node volume into smaller virtual nodes
 - Spread virtual nodes across SIMD lanes (these were memory banks in CM5)
 - Modifies data layout to align data parallel operations to SIMD hardware
- Data parallel operation on both virtual nodes is now simple
 - · Crossing between SIMD lanes restricted to during cshifts between virtual nodes
 - Code to treat N-virtual nodes is identical to scalar code for one, except datum is N fold bigger

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SIMD made easy

- Sequence of operations remains the same as on BG/Q after BAGEL layout transformation
- O(100%) SIMD efficiency

Optimised sequence of operations is *identical* for scalar complex and SIMD operation BG/L(left, scalar complex) and BG/Q(right vector complex) assembler comparison

```
bt gt, __lab3
                                                             bt gt, __lab3
addi. %r9 . %r13 . 0
                                                              addi %r9 . %r13 . 0
lab3:
                                                      __lab3:
fxcxnpma 0 , 30 , 29 , 26
                                                              qvfxxnpmadd 0 , 29 , 30 , 26
dcbt %r18.%r9
                                                              dcbt
                                                                     %r18.%r9
                                                             qvfxxnpmadd 1 , 22 , 30 , 24
fxcxnpma 1 , 30 , 22 , 24
stfpdx 9,%r21,%r17
                                                              qvstfdx 9,%r21,%r17
fxcxnpma 2 , 30 , 7 , 23
                                                              gvfxxnpmadd 2 , 7 , 30 , 23
stfpdx 10,%r22,%r17
                                                              qvstfdx 10,%r22,%r17
fxcxnpma 3 , 30 , 28 , 27
                                                              gvfxxnpmadd 3 , 28 , 30 , 27
dcbt %r20.%r9
                                                              dcbt %r20.%r9
fxcxnpma 4 , 30 , 21 , 25
                                                              gvfxxnpmadd 4 . 21 . 30 . 25
stfpdx 11.%r23.%r17
                                                              gystfdx 11.%r23.%r17
fxcxnpma 5, 30, 6, 31
                                                             qvfxxnpmadd 5 , 6 , 30 , 31
la %r16, -1(%r16)
                                                              la %r16, -1(%r16)
                                                             qvfxmul 7 , 15 , 0
fxpmul 7 , 15 , 0
                                                             dcbt %r22,%r9
dcbt %r22.%r9
fxpmul 6 , 12 , 0
                                                              gvfxmul 6 , 12 , 0
```

Path to wider SIMD?

- F90 data parallel compiler with HPF-like distribute extensions controlling *both* SIMD and Thread parallelism could be an exascale killer app
- cmfortran + MPI !

25% efficiency for up to 4^4 = 256 way SIMD

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L1p architecture

Interface between core and memory switch

- Handles coherency, synchronisation, write and read traffic
- 1600MHz 800MHz domain crossing
- MPGZ Asic design process boundary

Write combine

- Hold recently written data; merge with later writes to same 32byte line
- 20 entry buffer for writes allows core to continue progress

Prefetch cache

- 4KB fully associative prefetch cache: 32 lines, 128b line size
- Coherent & consistent ; invalidates lines if written

Stream prefetch

- Adaptive length prefetch (configurable)
- Fixed length prefetch (optional)
- 1-16 streams of depth 1-8 each

Perfect prefetch - record access patterns and replay

Adaptive prefetch

🗖 Computer 🙀 🗐 🛛 Thu Apr 30, 6:24 AM 🔒
🐔 WaveWindow: /itmp/paboyle/bgq_april09/bgq/hwverify/src/fulichip/examples/bandwidth/FCTest.bandwidth.090429-170036/Vi 🚍 🖬
File Edit View List Waves Operations Markers Annotation Windows Help
□ ● X 助 ● 助 L = ○ ○ ▲ □ ○ □ □ □ □ □ □ □ ○ □ ○ ○ ○ ○
Go to: 3 Start: 154312 cycles interval: 64 cycles End: 17/0424 cycles
17_16485 1 μεαρο μετίου μετάρο μετάρο μετάρο μετάρο μετάρο μετάρο μετάρο μιστάρο μιστάρο μιστάρο μιστάρο μιστάρο μιστάρο
8 HT STREAM (D(0.3) VYBY VGGW (MWW VYBY V / VYTY A F H WWY VYBYBW (F H H) H H H WWW (H WWW H H H H H H H H H H H
9 PFD SD MISS
11 SD_NLE_ADDR(0:41) 0707 707 707 707 707 707 707 707 707 7
12 SD_NLE_REQ
13 SD_NLE_STREAM_ID(0.3) = \$\frac{1}{2}\frac
14 DEPTH_STEAL
17 DEPTH_STEAL_PFD
18 DEPTH_TABLE(0:15)
19 LRU_STREAM_ID(0:15)
20 LRU_TABLE(0:15)
198 41// 188465 6003
(Command>
Sync Group A
🗣 🔲 Termi 🗋 (VNC 🗋 mpg 📄 [mpg 📄 [Issu 📄 [final 📄 [ema] 🗖 [ema] 📩 [Axso] 🐔 [Waye] 🛣

Memory optimisation

Loop order determined by

- 1. maximising reuse
- 2. avoiding write through traffic

```
Must accumulate spinors in QPX registers
```

```
for(x) {
  for(s=0; s< Ls; s++) {
    for ( mu ) {
        psi[s][x] += U[x][mu] (1+gamma[mu]) psi[x+mu]
    }
   }
}</pre>
```

- \Rightarrow short streams length one spinor 192/384 bytes
- ⇒ introduce L1p modes to optimise for this
 - Program predetermined stream length (1-8 L2 lines) Avoids wasting bandwidth fetching beyond the end Essentially a programmable line size

Programmer tunes fetch hardware to *exactly* match algorithms spatial locality Particularly important when there is no temporal locality benefit of cachelines

- Change effect of dcbtl2 hint to preplace spinor in L1p
- · Hide L1 locking from L2 to avoid unlock overhead

Dataflow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

BlueGene/Q network design

5 dimensional routing torus network: ABCDE

- 2GB/s send + 2GB/s recv per link
- 40GB/s over 5 dimensions, 32GB/s available to 4d QCD partition
- E dimension remains on the the node
- D dimension connects top bottom in rack
- A,B,C,D connections between midplanes

Use up to 3d optical torus between racks

- Copper within midplane
- Optics is expensive in power and money
- · High density racks reduce optics overhead by surface to volume ratio
- · Physical space is only a secondary issue pushing high density

Message unit resources

· Messaging engines for each thread: able to do local copying as well as remote

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Up to 64 MPI processes per node possible

Edinburgh BlueGene/Q protototype (1.26Pflop/s)

<ロ> (四) (四) (三) (三) (三)

Six Edinburgh BG/Q racks Part of STFC funded DiRAC facility

BG/Q thread acceleration

L2 atomic operations

 High order address bits invoke non-cache atomic operations Use to implement *fast* 600ns barriers Barriers carefully designed to send *absolute* minimum across memory switch

Bagel uses 64 threads and one MPI process per node

- Long lived threads duration of solver
- Barrier synchronisation
 - minimises fork/join overhead
 - · External packet size is maximised giving best MPI bandwidth
 - · Internal copying for MPI within node is eliminated
- Use System Programming Interface (SPI) to obtain best performance

Pin communications buffers in dedicated pinned memory pages etc.

BAGEL Torus mapping

- BlueGene/Q has a 5d physical torus/mesh Periodic link not guaranteed on all paritions
- · Can always ensure 3d torus using improved version of QCDOC dimension folding
 - · Fold periodic dimension length 4 into two orthogonal mesh directions
 - QMP patch supplied to James Osborne
- Bagel code uses SPI DMA communications for halo exchange Coexists gracefully with MPI in rest of code 3x speed up at small volumes

4 (torus, circles) \times 4(mesh, line) \times 6(mesh, line) physical grid

8 (torus) \times 12(torus) logical grid

SPI network performance

90% link saturation; delivered network bandwidth exceeds DDR memory bandwidth \Rightarrow designed for scaling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

600ns latency available through SPI

$ot\!\!\!/ p$ implementation

- Single-node, double precision get 110Gflop/s (65% pipeline usage) within L2 cache
- Multi-node cache optimal loop order forces two pass approach to overlap comms & compute (interior/exterior)

 $\label{eq:multi-node} \mbox{ Multi-node double precision DWF dslash performance}$

Add the halo terms to the surface

Conjugate gradient optimisation

Minimise load on off-chip memory

• Linear combinations have a sizable performance impact due to memory bandwidth Fuse $\mathbf{Z} = \mathbf{Z} + A\mathbf{X} + B\mathbf{D}\mathbf{Y}$ operations into Dslash routine to avoid write-reread cycles

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Alternate CG recurrence expression eliminates serial dependency Fuse all linear combinations into a single pass to increase cache reuse (Pipelined CG, Strzodka & Goddeke)
- Implement single inner, double outer defect correction
 ⇒ correcting single precision defect is a *rapidly* convergent expansion

Time for something a little bigger!

DWF mixed precision CG on Sequoia

Sweet spot is 532Tflop/s on a 8192 node partition for $64^3 \times 128$.

Plot thanks to Michael Buchoff, Pavlos Vranas, Joseph Wasem, Christopher Schroeder, Thomas Luu and Ron Soltz at Lawrence Livermore National Laboratory.

DWF CG performance on Sequoia (48 racks, 50% machine)

Weak Scaling on $8^4\times 16$ local volume

Thanks to Michael Buchoff, Pavlos Vranas, Joseph Wasem, Christopher Schroeder, Thomas Luuand Ron Soltz at Lawrence Livermore National Laboratory. $4 \square > 4 \square >$

Record performance

- 3.07 Petaflop/s sustained performance on half the Livermore system
- 32% of peak, 41% Floating point pipeline usage over entire CG
- Global volume equivalent to $128^3 \times 96 \times 16$
- Expect 6.14 Petaflop/s on useful global volume equivalent to $128^3 \times 192 \times 16$ for full machine
- Smashed the Petaflop/s barrier 14th Jun 2012!

Bagel support

Algorithms

- CG, Multi-shift CG, Mixed precision CG
- Polynomial filtered implicitly restarted Arnoldi/Lanczos (Rudy Arthur)
- New algorithms easy to implement (Qi Liu: EigCG, Arthur: Bicg variants)

Actions

- Wilson
- Wilson twisted mass
- DWF (5d prec)
- DWF (4d prec)
- 5d Overlap : {Cayley, ContinuedFraction, PartialFraction} \otimes {Zolotarev, Tanh} \otimes { H_T , H_W }

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clover in progress (Karthee Sivalingam)

Bagel is GPL software and (beta) available from www.ph.ed.ac.uk/~paboyle/bagel (v2.95) In process of freezing v3.0.0

Competitive position

- Most efficient computer in Green500
- Fastest computer Graph500 memory system benchmark
- Fastest computer in the world top500 June 2012 @ 16.32 Pflop/s Linpack
- 2 systems in top 3 / 6 systems in top 20 / 15 systems in top 100

Planned QCD deployments:

- 1.26 Pflop/s dedicated QCD racks at KEK
- 1.26 Pflop/s dedicated QCD racks at Edinburgh (DiRAC)
- 0.630 Pflop/s dedicated QCD racks at BNL
- 20Pflop/s Livermore shared use
- 10Pflop/s Argonne shared use
- 2.1 Pflop/s Cineca shared use (Fermi
- 1.64 Pflop/s Juelich shared use
- \Rightarrow aggregate multi-Pflop/s sustained QCD performance

The competition

Architecture	Cache read BW/size	Memory BW/size	Network BW	$L_{min} \sim \frac{B_C}{B_N}$
BG/Q	410GB/s , 32MB	43GB/s, 16GB	40GB/s (30)	10 (8)
K-computer	??/6MB	64GB/s, 16GB	100GB/s (60)	(4??)
Cray XK6 (twin GPU)	??	354GB/s , 12GB	20 GB/s ⁴	18
GPU+infiniband 1:1	??	150GB/s , 6GB	5GB/s	30
GPU+infiniband 4:1	??	600GB/s , 24GB	5GB/s	120

Educated guess: K-computer looks more scalable but as far as I can tell it only provides 3d partitions ⇒ 4³ × L minimum volume?

- Prediction for Titan (XK6) broadly consistent with results of Clark & Joo for bicgstab They find domain decomposition helps for Wilson/Clover, 1.5x less numerically efficient
- GPUs + IB (1:1) will allow modest scaling on big volumes
- GPUs + IB (4:1) will not scale beyond one node on any reasonable lattice

Broadly two models emerging:

- Coherent many-core nodes: MPI \otimes OpenMP \otimes SIMD
- Incoherent accelerator nodes: MPI \otimes CUDA/OpenCL/OpenAcc
- Intel MIC somewhere in between

⁴CudaMemcpy limited, I assume bidirectional copies

BGQ-4-YOU

Real benefit from integrating 40GB/s network and 32MB cache on a chip

3 Petaflop/s sustained performance on half the Livermore system!