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 Lattice study of effective model of Graphene  

 Conjecture of correspondence between Graphene and 

QED model in which fermion is bounded in 2+1 D brane. 

 

 

 

 

 

 

 The non-perturbative study of QED mode need: 

 The phase transition occurs in strong region. 

 Coupling constant is enlarged by small fermi-velocity: 

    aQED = 1/(4pv) ~ O(1) because v ~ O(10-2). 

 Strong dynamics plays important role. 
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MOTIVATION  

QED model Graphene 

Chiral phase transition Excitonic insulator transition 

Energy gap  Band gap 

Massless Dirac fermion Electron-hole 

Charn-Simon, magnetic catalysis Anomalous Hall effect 
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Graphene:  

Insulator transition 

Relativistic QED model 
•  Gauge invariant, (super-)renormalizable 

•  Velocity effect 

•  Non-trivial relation between honeycomb 

lattice 

Non-relativistic QED model 

• Starting from tight-binding model on 

honeycomb lattice 

• Instantaneous Coulomb interaction  

•  No-scale and unrenormalizable 

Chiral transition, 

renormalization 

Chiral transition 

MODEL PREDICTION  

Large N analysis: 

  Son, PRB 75, 235423 (2007). 

  Herbut, PRL 97, 146401 (2006). 

Schwinger-Dyson equation: 

  Gorbar et al., PRD 64, 105028 (2001). 

  Gamayun, et al., PRB 81, 075429 (2010). 

Monte-Carlo study: 

  Drut and Lahde, PRL 102, 026802 (2009). 

  Armour et al., PRB 81, 125105 (2010). 

Perturbation: 

  Gonzalez et al., NPB 424, 595 (1994). 

  Kotov et al., arXiv:1012.3484 

Monte-Carlo study: 

  ES and Onogi, arXiv:1203.1091 [hep-lat] 

Chiral transion  Graphene band gap:  

analogy of spontaneous mass gap in QED3  

Jackiw and Templeton (1981),  

Appelquiest and Pisarski (1981) 



 Insulator transition  

 There is no evidence in monolayer Graphene. 

     Possibly weak coupling aeff =aQED e0 1 due to effect of substrate of Si.  

      

 

 

 

 

 Scaling of velocity  

 Fermi-velocity has logarithmic scaling: 

 

 

 

    Consistent behavior of perturbation result in  

     relativistic model. 
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D. C. Elias, et al.,  

Nature Phys. 7, 701 (2011). 

EXPERIMENTAL BEHAVIOR 

Non-relativistic 

Relativistic 

Monolayer Doublelayer 

Zero ?→ 

Finite →  

A.S. Mayorov, et al.,  

Science 333, 860 (2011). 



 Monte Carlo study of relativistic model 

 Generalize to relativistic QED action with velocity 

 

 

Gauge invariance and including fermi velocity,  

 which is more realistic than non-relativistic approach. 

 Rescaled  

 

OUR STRATEGY   
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x,y 

t 
 a/v a 

•  “Strong” electric and “weak” magnetic field. 

•  Photon field at z direction is interaction free. 

•  Two bare parameters, (v. b) 

T 

aE 

v→ 0 

2+1 dimensional 3+1 dimensional 

Drut and Lahde (2009),  

Armour et al.(2010). 



 Dynamical staggered fermion simulation 

 HMC simulation 

 Omelyan integrator 

 Hasenbush mass preconditioning, mh = 0.05 

 Low-mode projection (if CG iteration is over than 104) 

 HMC time step t ⋍ 0.01 – 0.05, HMC time Nt = 1/t  

 10000 – 30000 HMC traj after 400 traj therm 

 20 steps for use of statistics, O(100) total statistics  

 Jackknife error analysis, bin size = 10 

 Spatial periodic, temporal anti-periodic BC 

 Finite temperature, Nt=20 fixed. 

LATTICE SIMULATION 
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CHIRAL SYMMETRY BREAKING 

Chiral symmetry breaking 

Chiral condensate: s 

Chiral suceptibility: cm 

Lowlying distribution 

of Dirac kernel 
Hadronic spectrum 

Order parameter 

Peak of cm 

Critical point 

Banks-Casher relation 

Random matrix theory Nambu-Goldstone boson 

Chiral perturbation 

PCAC relation 



CHIRAL CONDENSATE AND SUSCEPTIBILITY  
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v=0.1 

a = 1/(4pbv) 



CHIRAL CONDENSATE AND SUSCEPTIBILITY  

•  Significant mass dependence  

•  Critical behavior of 2nd order transition 

•  Clear peak of cm 

•  Critical point:   

   (bv)c ⋍ 0.05 – 0.06, ac⋍ 1.3 = O(1). 
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•  Schwinger-Dyson model: 

    ac= 0.92 – 1.13 
Gamayun, et al. (2010), 

Khveshchenko (2009) 

v=0.1 

a = 1/(4pbv) 

•  Non-relativistic MC 

    ac= 1.11(6) 

Drut, Lahde (2009) 



 Spectral density 

 Lowmode distribution which is related to chiral symmetry breaking 

 Banks-Casher relation: 
 

 

 

 

 Gap appears due to finite size effect 

 Scale generation: 1/(VS) 

 

 

 Level spacing distribution 

 According to random matrix theory, we can distinguish universal  

    distribution of level spacing:  
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 spectral density provides chiral condensate 

r(l) 

~1/(VS) 

broken 

S/p 

sym 

← fundamental rep.,  

    U(N) U(N)/U(N) 

LOWMODE DISTRIBUTION 
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LOWMODE DISTRIBUTION 
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LOWMODE DISTRIBUTION 
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• Correspondence between 

critical point and behavior of 

spectral density 

• b = 0.5, “hard edge” 

    b > 0.6, perturbative  

 

 

 

• Level spacing distribution 

is consistent with RMT 

LOWMODE DISTRIBUTION 

cf. Damgaard, Heller, et al. (2000) 



 Goldstone boson spectrum 

Correlation function of NG 

boson:  

 

 

Effective (screening) mass mp  
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HADRONIC SPECTRUM  

Existing asymptotic state of 

NG boson  

b= 0.4 - 0.5 : c2 fitting works well.

b= 0.6:   seems to be plateau           

b= 0.7:  do not observe plateau. 

 

NG boson state appear  in strong 

broken phase  



 Comparison with ChPT and PCAC 
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HADRONIC SPECTRUM  

NG boson mass and decay constant have to be satisfied with  

ChPT and PCAC relation 

Linear sea mass 

fitting of S obtained 

by spectral density. 

•  Plateau appears in 

[0.0015, 0.005] 

•  obtain B factor 

•  non-linear behavior 

at β > 0.55 



 Comparison with ChPT and PCAC 
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•  GMOR relation: 

     S: Banks-Casher rel. 

     B: constant fit  

•  β > 0.55, fNG → 0 

linearly. 

•  Consistent value with 

GMOR using linear 

chiral extrapolation at  

β 0.5. 

HADRONIC SPECTRUM  



SUMMARY 
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Lattice QED model 

with fermion brane  

Graphene model 

•  Metal-insulator transition 

•  Hall effect 

Relativistic definition: 

2+1 D fermion + 4D gauge, 

gauge invariance, velocity scaling 

1st step 

Chiral symmetry 

breaking 

Continuum limit ? 

Phase diagram ? 

Renormalization ? 
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WHAT IS NG BOSON ? 

PS operator:  

Considering 4 NG boson states as spin degenerate 

NG boson: bound state of electron-hole with different valley and sublattice  

Pairing ? 



BACKUP SLIDE 
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GRAPHENE LATTICE AND HAMILTONIAN 

 Tight binding approximation 

 

 

 

 

 

 

b1 

b2 

b3 

a1 

a2 

Experimental estimate :  

    t = 2.8 eV,  t’ = 0.1 eV 

•  The second term is next-to-leading order 

•  Setting to t’ = 0 is good approximation 

Reich, et al., (2002) 
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 Expansion near Dirac point 

 Dirac (K) point : hexagonal points 

 Fourier transformation of H 

 

 

 

 

 |Ek | = 0   

 

 

    

LOW ENERGY APPROXIMATION 
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A, B sublattice Dirac point 

Wallance (1947), G. W. Semenoff, (1984) 



 Effective QED model 

 H0 (tight-binding)  2+1D QED with fermi velocity  

 Instantaneous interaction 

 

 

 

 

 U(4) global symmetry 

    In monolayer case, 16 generators   

 

 Parity can be defined as P = g0 

 Nf = spin(=2) layer,  Nf =2 : monolayer, Nf =4 : double layer 

 There were many studies with Schwinger-Dyson, large-N, Monte-Carlo 

 

Concering issue:  

 Velocity free after rescaling  

 Gauge variant action → difficult scaling study 

 

LOW ENERGY GRAPHENE MODEL 
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Gorbar (2001), Son (2005), Drut (2009) 



 Staggered fermion in 2+1 dimension 

 

 

 

 

 

 Chiral symmetry  

 

which is rotation of spinor and flavor simultaneously. 

 Restore the global U(4) in the continuum limit, without root trick 

 Non-Compact QED 

LATTICE QED MODEL WITH FERMION BRANE 
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-p p 

p 

-p 

[Hands, Kogut, et al.(1989--2010)] [QCDSF (1990--1998)] 

[Drut, Lahde (2009--2010)] 

There were many lattice studies in 3D and 4D QED for chiral SB and 

scaling study. 
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LOW-LYING MODE DISTRIBUTION 

U(Nf) U(Nf)/U(Nf) 



 Chiral condensate 

MASS DEPENDENCE 
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LO perturbation 

v=0.1 



 Chiral susceptibility 

VACUUM POLARIZATION EFFECT 
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•  Peak becomes sharp 

compared with quench 

results 

•  Dynamical effects 

   - v = 0.1 

     (βv)c ⋍ 0.1 (quench) 

                → 0.062 (full)  

   - v=0.05 

     (βv)c ⋍ 0.09 (quench) 

                → 0.055 (full)  

    for αc : 50--60% increase 

Dynamical effect is significant ! 
 (and also similar to gap equation.) 

Gamayun, et al. (2010) 

[MC: ac= 1.08 in Drut (2009)] 

cf. Gap eq. prediction 

    (quench) : αc =0.5 

    (1-loop)   : αc =0.92 

                 ⋍50% increase 


