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The underlying lattice



The A and B sublattices



The dynamical system

We label the lattice sites by a single index x and the sublattice index

A,B. We impose periodic boundary conditions with period L.

To each lattice site we associate creation and annihilation operators

for electrons of spin s =↑, ↓:

ax,s, a†x,s



The Hamiltonian

H =
∑
〈x,y〉,s

κ(a†x,A,say,B,s + a†x,B,say,A,s) + e2
∑
x,y

Vx,yq(x)q(y)

where 〈x, y〉 stands for nearest neighbors, the sublattice indices

have been omitted in the Coulomb term, and

q(x) = a†x,↑ax,↑ + a†x,↓ax,↓ − 1

The−1 stands for the charge of the nucleus and insures neutrality

at half filling. We demand that V be positive definite. (Both will be

important for the MC formulation.) We will set κ = 1.



The quadratic Hamiltonian

H2 =
∑
〈x,y〉,s

(a†x,A,say,B,s + a†x,B,say,A,s)

can be diagonalized by Fourier transform. It is diagonal in Fourier

space, but couples the A and B sublattices.



The Observables

We wish to calculate

Z = Tr e−βH

and Green functions of the type

G(t) = Tr T[a(t)a†(0)e−βH ]

where the time ordering (T) stands for

G(t) = Tr [e−H(β−t)ae−Hta†]



Path integral formulation

We formulate the path integral by introducing coherent states (see

Negele and Orland, Quantum Many-Particle Systems)

|α〉 = e−
P

x αxa
†
x|0〉

Completeness reads

I =

∫ ∏
dα∗dα e

P
−α∗α |α〉〈α∗|



Path integral formulation, cont’d

We split the evolution by Euclidean time β into the product of Nt

evolutions by δ = β/Nt and use completeness:

Tr e−βH =

∫ Nt−1∏
i=0

dα∗i dαi

Nt−1∏
i=0

e−α
∗
i αi+1〈α∗i |e−H δ|αi〉

(We shifted a dummy index, αi → αi+1, to conform to the discretization in

Q.F.T.)



Path integral formulation, cont’d

We finally use

〈α∗i |F (a†, a)|αi〉 = F (α∗i , αi) e
α∗i αi

valid for any normal ordered operator function F (a†, a)

e−H δ is not normal ordered, but differs from its normal ordered

expression by O(δ2)



Path integral formulation

In conclusion we get

Tr e−βH =

∫ Nt−1∏
i=0

dα∗i dαi

Nt−1∏
i=0

e−α
∗
i (αi+1−αi)e−H(αi,αi) δ

=

∫ Nt−1∏
i=0

dα∗i dαi e
−S(α∗,α)



The Coulomb interaction

The Hamiltonian consists of two terms (dropping the sublattice

indices): H = H2 +Hc

H2 =
∑
x,y,s

a†x,sKx,yay,s + h.c. ≡ a†Ka+ h.c.

and

HC =
∑
x,y

e2Vx,y : qxqy :

with

qx = a†x,↑ax,↑ + a†x,↓ax,↓ − 1



Looking ahead to a positive definite measure

We rewrite qx as

qx = a†x,↑ax,↑ − ax,↓a
†
x,↓

and define

b†x = ax,↓ bx = a†x,↓

This gives (we drop the index ↑)

qx = a†xax − b†xbx

while H2 can be cast in the form

H2 =
∑
x,y

[a†xKx,yay + b†xKx,yby + h.c.]

by changing the sign of the b, b† operators on one of the sublattices.



The path integral

We now can write

Z = lim
Nt→∞

∫ Nt−1∏
m=0

dψ∗mdψm

Nt−1∏
m=0

dη∗mdηm

e−
P

m,n(ψ∗mMm,nψn+η∗mMm,nηn)e−
P

i,x,y e
2qi,xqi,yVx,yδ

with

qi,x = ψ∗i,xψi,x − η∗i,xηi,x



The final ingredient is a Hubbard-Stratonovich transformation

e−
P

i,x,y e
2qi,xqi,yVx,yδ =

∫ ∏
i,x

dφi,xe
−

P
i,x,y φi,xφi,yV

−1
x,y δ/4

e−
P

i,x ıeφi,x(ψ∗i,xψi,x−η∗i,xηi,x)δ

which gives

Z = lim
Nt→∞

∫ ∏
i,x

dψ∗i,xdψi,x
∏
i,x

dη∗i,xdηi,x
∏
i,x

dφi,x

e−
P

i,x,y φi,xφi,yV
−1
x,y δ/4e−

P
i,x,j,y(ψ∗i,xMi,x;j,yψj,y+η∗i,xMi,x;j,yηj,y)

e−
P

i,x ıeφi,x(ψ∗i,xψi,x−η∗i,xηi,x)δ



The path integral, cont’d

Introducing Φ, diagonal with diag. entries

Φi,x = φi,xδ

the partition function can be written very compactly

Z = lim
Nt→∞

∫
dφe−φV

−1φδ/4

∫
dψ∗dψdη∗dη

e−ψ
∗(M+ıeΦ)ψ−η∗(M−ıeΦ)η

or, integrating over the fermions

Z =

∫
dφe−φV

−1φδ/4det(M + ıeΦ)det(M − ıeΦ)

which lends itself to Hybrid Monte Carlo integration.



Hybrid Monte Carlo

Z =

∫
dφe−φV

−1φδ/4det(M + ıeΦ)det(M − ıeΦ)

=

∫
dφdpdψ∗dψe−φV

−1φδ/4−p2/2e−ψ
∗(M−ıeΦ)−1†(M−ıeΦ)−1ψ

Then one explores phase space by extracting the now bosonic

fields p, ψ, ψ∗ with their Gaussian measure, evolving φ, p with

H = φV −1φδ/4 + p2/2 + ψ∗(M − ıeΦ)−1†(M − ıeΦ)−1ψ

and correcting for the errors in the discretized evolution with a

global MC accept-reject step.



HMC vs. exact for small systems
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Graphene lattices with period one and two.



Two-sites system - HMC vs. exact

Ca(t) = 〈(a0 − a1)(t) (a†0 − a
†
1)(0)〉/2

for β = 6.4, Nt = 64 and 128, e = 0 and e = 0.5



Numerical diagonalization of the eight-site system

Dimensionality of basis: 65,536 !!!

Convenient numerical representation:

b†5b
†
2a
†
7a
†
4a
†
3a
†
0|〉 ↔ |0010010010011001〉 = |9369〉

Use conservation laws with suitable ordering of basis states to

make the Hamiltonian block diagonal. Calculate numerically

eigenvalues and eigenvectors block by block. Calculate the

correlators

C(t) = 〈ψ(t)ψ†(0)〉



Eight-sites system - HMC vs. exact: e = 0.5, Nt = 128
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Eight-sites system - HMC vs. exact: e =
√

2/2, Nt = 128
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Eight-sites system - HMC vs. exact: e = 1.0, Nt = 128
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The trend is correct, but the agreement is not fully satisfactory. The

disagreement could be due to an error in the programs (checking),

lack of convergence, critical behavior... (?)



Conclusions

It appears possible to use the hybrid Monte Carlo method to

simulate graphene directly on the graphene lattice.

Variants of the method (e.g. the use of central difference

approximation and staggering in time to represent both spins) are

being investigated. Simulations on large lattices are in progress to

study the emergence of a gap.

It the method is fully validated, it has potential applications to a wide

range of problems (lattice distortions, external magnetic fields, etc.)



Additional slides



Periodicity



Periodicity, rearranged



Hexagonal symmetry



The coupling matrix:

(
0 1 + e2πık1/L + e2πık2/L

1 + e−2πık1/L + e−2πık2/L 0

)

≡

(
0 e[k1, k2]eıφ[k1,k]2

e[k1, k2]e−ıφ[k1,k2] 0

)
where φ, e are the phase and magnitude of

1 + e2πık1/L + e2πık2/L



The zero modes

1 + e2πık1/L + e2πık2/L

vanishes for

2πık1/L = −2πık2/L = ±2π/3

On an infinite lattice, and also on finite lattices where periodicity is

up to a factor of 3, the quadratic Hamiltonian has two zero modes at

two different points in momentum space and, with an infinite system,

the dispersion relation similar to the one of massless Dirac fermions

in the neighborhood of the zeroes.



Simulation of a two sites system



Simulation of a two sites system

We label the sites x = 0, 1. With κ = 1/3. H2 and HC are now

H2 = (a†1a0 + a†0a1 + b†1b0 + b†0b1)

HC = 2e2(a†0a0 − b†0b0)(a†1a1 − b†1b1) + (2e2/r0)a†xb
†
xaxbx

+(e2/r0)(a†xax + b†xbx)

The spectrum can be calculated exactly and compared with HMC

simulations.



Two sites system - HMC vs. exact

Ca(t) = 〈(a0 − a1)(t) (a†0 − a
†
1)(0)〉/2

for β = 6.4, Nt = 64 and 128, e = 0 and e = 0.5



Two sites system - HMC vs. exact

Ca(t) = 〈(a0−a1)(t) (a†0−a
†
1)(0)〉/2 Cb(t) = 〈(b†0+b

†
1)(t) (b0+b1)(0)〉/2

for β = 6.4, Nt = 64 and 128, e = 0.5


