Monte Carlo approach to string/M theory

Masanori Hanada 花田政範

KEK Theory Center

Goal (I) : understand these figures.

power law predicted by SUGRA

energy density of SUSY quantum mechanics

Goal (2)

Convince you that lattice theorists can give very important contributions to string/M-theory, which usual string theorists can never give.

quantum nature of the black hole, Hawking evapolation, birth of the universe, inflation, multiverse,...

Apologies

Because we have only 30 minutes...

- I skip all the technical details, e.g. how to put supersymmetry on computer. I explain only basic ideas about physics.
- I can explain only a few topics.
- My explanation is sometimes too simplified and not very precise.

Plan

(1) Gauge/Gravity duality (AdS/CFT) and Super Yang-Mills

(2) ABJM Theory and M-theory ('membrane mini revolution') (M.Honda's talk)

(3) Expanding universe out of a matrix model? (S.-W. Kim's talk & K.N.Anagnostopoulos's talk)

Plan

(1) Gauge/Gravity duality (AdS/CFT) and Super Yang-Mills

(2) ABJM Theory and M-theory ('membrane mini revolution') (M.Honda's talk)

(3) Expanding universe out of a matrix model? (S.-W. Kim's talk & K.N.Anagnostopoulos's talk)

What is string theory? (Only PERTURBATIVE definition exists)

- Point particles are promoted to (I+I)-dimensional 'string'.
- Open string →gauge fields and infinitely many massive fields

gauge degrees of freedom live on the edges

• Closed string \rightarrow graviton, tensors and massive fields

- The scattering amplitudes can be calculated.
- Spacetime dimension is 1+9=10.

Supergravity as a low-energy effective theory

 From the scattering amplitudes, one can determine the low-energy effective action in terms of the <u>massless fields</u>, which reproduce the amplitudes.
 Graviton G_{µν}, dilaton φ, NS B-field B_{µν}, R-R fields C_{µνρ}...

IIA/IIB superstring \Rightarrow IIA/IIB supergravity

There are supersymmetric black p-brane solutions coupling to p-form tensor. (Horowitz-Strominger 1991)
 (p+1)-d analogues of the black hole
 (p=even for IIA, p=odd for IIB)

Can we understand black p-brane from the perturbative string picture?

black brane = D-brane

 Dp-brane (Dirichlet p-brane) is a (p+1)-d object on which open string can be <u>attached</u>.

Dirichlet boundary condition along the transverse direction

• It has the same charge as the black p-brane.

D-brane open string picture

closed string picture black brane

Polchinski

bunch of many D-branes = black brane (large-N \rightarrow heavy and big \rightarrow classical gravity)

SYM from D-brane (I)

SYM from D-brane (2)

 A_{μ} , Φ and ψ become N×N matrices

(i,j)-component= string connectingi-th and j-th D-branes

(p+1)-d U(N) Super Yang-Mills

(more generally, the Dirac-Born-Infeld action)

N Dp-branes

Maximally supersymmetric Yang-Mills (Brink-Schwarz-Scherk 1977) IOd $\mathcal{N}=I$ U(N) SYM $S_{10d} = \frac{1}{g_{YM}^2} \int d^{10}x Tr\left(\frac{1}{4}F_{MN}^2 + \frac{1}{2}\bar{\psi}\gamma^M D_M\psi\right)$ dimensional reduction $S_{(p+1)d} = \frac{1}{g_{YM}^2} \int d^{p+1}x Tr\left(\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{2}(D_{\mu}X_i)^2 + \frac{1}{4}[X_i, X_j]^2 + \frac{1}{2}\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{i}{2}\bar{\psi}\gamma^i[X_i, \psi]\right)$ **Dp-brane** worldvolume SUSY transf. $\delta A_M \sim \bar{\epsilon} \Gamma_M \psi$ $\delta\psi\sim F^{MN}\Gamma_{MN}\epsilon$

Gauge/gravity duality <u>conjecture</u> (Maldacena 1997)

- In a special limit, both SYM and weakly-coupled string pictures become valid.
- But they are two different descriptions of the same D-brane system. So...

The dictionary

SYM

STRING

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling SUGRA

tree-level string (SUGRA+α')

Quantum string (g_{string}>0)

SYMdifficult

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling

STRING

SUGRA easier

tree-level string (SUGRA+α') more difficult Quantum string (gstring>0) very difficult

SYMdifficult

STRING

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling SUGRA easier

tree-level string (SUGRA+α') more difficult Quantum string (gstring>0) very difficult

can be useful, if we use Monte Carlo !

Very important remark

 From the string theory point of view, SYM theories in less than four spacetime dimensions are as interesting as four dimensional theories!

(0+1)-d SYM \Leftrightarrow Black hole (0-brane) (1+1)-d SYM \Leftrightarrow Black 1-brane, black string (3+1)-d SYM \Leftrightarrow Black 3-brane (AdS₅×S⁵)

D0-brane quantum mechanics

$$S = \frac{N}{\lambda} \int dt \ Tr \Big\{ \frac{1}{2} (D_t X_i)^2 - \frac{1}{4} [X_i, X_j]^2 \\ \mathbf{0} \qquad + \frac{1}{2} \bar{\psi} D_t \psi - \frac{1}{2} \bar{\psi} \gamma^i [X_i, \psi] \Big\}$$

- Dimensional reduction of 4d N=4 (or 10d N=1)
- Strong coupling = low temperature and/or long distance

effective temperature (dimensionless) : $\lambda^{-1/3}T$

• No UV divergence \Rightarrow no need for lattice

Prediction from gravity side

$$\left(\frac{1}{N^2}E_{D0} \sim 7.4 \ T^{2.8} \quad (\lambda = 1)\right)$$

at large-N & low temperature (=strong coupling) $\lambda^{-1/3}T \ll 1.$

Temperature in YM = Hawking temperature

SYM should give a microscopic understanding of the black hole thermodynamics

black hole mass vs energy density

Anagnostopoulos-M.H.-Nishimura-Takeuchi 2007, M.H.-Hyakutake-Nishimura-Takeuchi 2008

M.H.-Hyakutake-Nishimura-Takeuchi 2008

Correlation functions (GKPW relation)

- Recipe to calculate the correlation function at <u>large-N</u> and <u>strong coupling</u> from supergravity (Gubser-Klebanov-Polyakov 1998, Witten1998)
- Similar relation holds also in D0-brane theory.

(Sekino-Yoneya 1999)

 $\langle \mathcal{O}(t)\mathcal{O}(0)\rangle \sim t^{\text{p}} \overset{\text{calculable}}{\underset{\text{via SUGRA}}{\text{via SUGRA}}}$

(M.H.-Nishimuea-Sekino-Yoneya 2009,2011)

(M.H.-Nishimura-Sekino-Yoneya 2011)

(I+I)-d SYM and black hole/black string transition

Susskind, Barbon-Kogan-Rabinovici, Li-Martinec-Sahakian, Aharony-Marsano-Minwalla-Wiseman,...

SYM simulation : Catterall-Wiseman, 2010

Several lattice theories exist (from around 2002-2005)

- Cohen, Kaplan, Katz, Unsal
- Sugino
- Catterall

- D'Adda, Kanamori, Kawamoto, Nagata
- No fine tuning to all order in perturbation. (Kaplan-Katz-Unsal 2002)
- Numerical simulation supprt the absence of the fine tuning at nonperturbative level.

(Suzuki 2007, Kanamori-Suziki 2008, M.H.-Kanamori 2009, 2010)

- Consider 2d U(N) SYM on a spatial circle. It describes N DI-branes in R^{1,8}×S¹, winding on S¹.
- T-dual picture : N D0-branes in R^{1,8}×S¹.

• Wilson line phase = position of D0

localized distribution = 'black hole'

If the black hole becomes larger, then...

- Wilson line phase = position of D0 $W = diag(e^{i\theta_1, \cdots, e^{i\theta_N}})$
- U(I) center symmetry

$$\theta_i \to \theta_i + const.$$

Uniform = center unbroken

$$\left\langle \frac{1}{N} TrW \right\rangle = 0$$

Non-uniform = center broken $\left\langle \frac{1}{N} TrW \right\rangle \neq 0$

Value of spatial Wilson loop

Plan

(1) Gauge/Gravity duality (AdS/CFT) and Super Yang-Mills

(2) ABJM Theory and M-theory ('membrane mini revolution') (M.Honda's talk)

(3) Expanding universe out of a matrix model? (S.-W. Kim's talk & K.N.Anagnostopoulos's talk)

M-theory (conjecture!)

- Strong coupling limit of type IIA superstring.
- Theory of membrane in IId spacetime.
- string = membrane winding on II-th dimension.
- Low-energy effective theory is IId supergravity.

AdS/CFT correspondence can hold also in **M-theory**.

D3-brane in IIB string $\rightarrow AdS_5 \times S^5$ M5-brane in M-theory $\rightarrow AdS_7 \times S^4$ M2-brane in M-theory $\rightarrow AdS_4 \times S^7$

ABJM theory (Aharony-Bergman-Jafferis-Maldacena, 2008)

$$k Tr \Biggl\{ \frac{\epsilon^{\mu\nu\rho}}{2} \left(-A_{\mu}\partial_{\nu}A_{\rho} - \frac{2}{3}A_{\mu}A_{\nu}A_{\rho} + \tilde{A}_{\mu}\partial_{\nu}\tilde{A}_{\rho} + \frac{2}{3}\tilde{A}_{\mu}\tilde{A}_{\nu}\tilde{A}_{\rho} \right) \\ + \left(-D_{\mu}\bar{\Phi}^{\alpha}D^{\mu}\Phi_{\alpha} + i\bar{\Psi}^{\alpha}D\Psi_{\alpha} \right) - i\epsilon^{\alpha\beta\gamma\delta}\Phi_{\alpha}\bar{\Psi}_{\beta}\Phi_{\gamma}\bar{\Psi}_{\delta} + i\epsilon_{\alpha\beta\gamma\delta}\bar{\Phi}^{\alpha}\Psi^{\beta}\bar{\Phi}^{\gamma}\Psi_{\delta} \\ + i\left(-\bar{\Psi}_{\beta}\Phi_{\alpha}\bar{\Phi}^{\alpha}\Psi^{\beta} + \Psi_{\beta}\bar{\Phi}_{\alpha}\Phi^{\alpha}\bar{\Psi}^{\beta} + 2\bar{\Psi}_{\alpha}\Phi_{\beta}\bar{\Phi}^{\alpha}\Psi^{\beta} - 2\Psi^{\beta}\bar{\Phi}^{\alpha}\Phi_{\beta}\bar{\Psi}_{\alpha} \right) \\ + \frac{1}{3} \left(\Phi_{\alpha}\bar{\Phi}^{\beta}\Phi_{\beta}\bar{\Phi}^{\gamma}\Phi_{\gamma}\bar{\Phi}^{\alpha} + \Phi_{\alpha}\bar{\Phi}^{\alpha}\Phi_{\beta}\bar{\Phi}^{\beta}\Phi_{\gamma}\bar{\Phi}^{\gamma} + 4\Phi_{\beta}\bar{\Phi}^{\alpha}\Phi_{\gamma}\bar{\Phi}^{\beta}\Phi_{\alpha}\bar{\Phi}^{\gamma} - 6\Phi_{\gamma}\bar{\Phi}^{\gamma}\Phi_{\beta}\bar{\Phi}^{\alpha}\Phi_{\alpha}\bar{\Phi}^{\beta} \right) \Biggr$$

3d U(N)_k×U(N)_{-k} Superconformal Chern-Simons-Matter theory

λ=N/k

By solving ABJM we can understand string and M in a unified manner.

localization

• Deform the theory, keeping the expectation value of a SUSY-invariant operator unchanged.

'localization technique'

$$S \rightarrow S + tQV$$

$$\uparrow$$

$$QS = 0, \qquad Q\mathcal{O} = 0$$
supercharge
$$\frac{d}{dt} \int [dX]\mathcal{O}e^{-S-tQV} = -\int [dX]\mathcal{O} \cdot (QV)e^{-S-tQV}$$

$$= -\int [dX]Q \left(\mathcal{O} \cdot Ve^{-tQV}\right)e^{-S}$$

$$= Z_{t=0} \times \langle Q\text{-exact} \rangle = 0$$

• At $t=\infty$, the path integral 'localizes' to a matrix model.

localization in ABJM

 The partition function of ABJM on S³ reduces to 'ABJM matrix model'

(Kapustin-Willett-Yaakov 2009)

 Z_{ABJM}

$$= \frac{1}{N!^2} \int \frac{d^N \mu}{(2\pi)^N} \frac{d^N \nu}{(2\pi)^N} \frac{\prod_{i < j} \left[2\sinh\left(\frac{\mu_i - \mu_j}{2}\right) \right]^2 \left[2\sinh\left(\frac{\nu_i - \nu_j}{2}\right) \right]^2}{\prod_{i,j} \left[2\cosh\left(\frac{\mu_i - \nu_j}{2}\right) \right]^2} \exp\left[\frac{ik}{4\pi} \sum_{i=1}^N (\mu_i^2 - \nu_i^2)\right]^2$$

• Perturbative part (in string language) can be studied analytically even at strong coupling.

(Drukke-Marino-Putrov 2009-2011, Fuji-Hirano-Moriyama2011)

• Monte-Carlo gives the full answer at any N and any coupling. (M.H.-Honda-Honma-Nishimura -Shiba-Yoshida 2012)

Planar limit ($\lambda = N/k$ fixed)

Large-N, fixed k

<u>IId</u> SUGRA has been reproduced!

strong evidence that ABJM gives the definition of M-theory

Current status

 By carefully analyzing the Monte Carlo results, analytic solution at finite-N and finite coupling, which is applicable to both string and M-regions, have been obtained.

 The I/N correction seems to disagree with string prediction. →made a miscalculation in the string side? have to modify the dictionary? Or gauge/ gravity duality fails at quantum string level?

Dark Energy Accelerated Expansion

Development of Galaxies, Planets, etc.

Inflation

Expanding universe from a matrix model?

Quantum Fluctuations

> 1st Stars about 400 million yrs.

> > **Big Bang Expansion**

13.7 billion years

IIB matrix model

(Ishibashi-Kawai-Kitazawa-Tsuchiya 1996)

- (0+0)-d SYM
- Matrix regularization of IIB superstring
- Eigenvalue distribution = spacetime ?

$$S = Tr\left(-rac{1}{4}[X_{\mu},X_{
u}]^2 - rac{1}{2}ar{\psi}\gamma^{\mu}[X_{\mu},\psi]
ight)$$

Expanding universe!

(Kim-Nishimura-Tsuchiya 2011)

• eigenvalue of X₀ = 'time'

• plot the extent of $X_1, ..., X_9$ at each 'time'.

Summary

- SUSY can be studied on computer, by combining lattice and non-lattice methods(e.g. Matrix model, localization,..).
- Simulation of the quantum gravity ⇒ black hole thermodymanics, inflation, birth of the universe, multiverse, ...
- Not string theorists, but lattice theorists, can study such exciting topics.

THE END

How to put Super Yang-Mills on computer

'No-Go' for lattice SYM

- SUSY algebra contains infinitesimal translation. $\{Q,\bar{Q}\}\sim\partial$
- Infinitesimal translation is broken on lattice by construction.
- So it is impossible to keep all supercharges exactly on lattice. Then SUSY breaking radiative corrections appear in general.
- Still it is possible to preserve a part of supercharges. (subalgebra which does not contain ∂)

Basic ideas

(Kaplan-Katz-Unsal 2002)

- Keep a few supercharges exact on lattice.
- Use it (and other discrete symmetries) to forbid SUSY breaking radiative corrections.
- Only "extended" SUSY can be realized for a technical reason.
- In (0+1)-d and (1+1)-d, no fine tuning to all order in perturbation.

(0+1)-d SYM

• Matrix quantum mechanics is UV finite.

No fine tuning!

(4d N=4 is also UV finite, but that relies on cancellations of the divergences...)

- We don't have to use lattice. Just fix the gauge & introduce momentum cutoff! (M.H.-Nishimura-Takeuchi, 2007)
- Lattice can also work, of course.

(2+1)-d maximal SYM

(Maldacena-Sheikh Jabbari-van Raamsdonk, 2003)

 Start with the Berenstein-Maldacena-Nastase Matrix model, which can be formulated without fine tuning.

$$S = \int dt \ Tr\left(\frac{1}{2}(D_t X_I)^2 - \frac{1}{4}[X_I, X_J]^2 + \frac{i\mu}{3}\epsilon^{abc}X_a X_b X_c + \frac{\mu^2}{18}X_a^2 + \frac{\mu^2}{72}X_i^2\right) + (\text{fermions})$$

$$I, J = I, ..., 9; a, b, c = I, 2, 3; i = 4, ..., 9$$

• BMN model has (modified) 16 SUSY

Fuzzy sphere

$$-[X_{b}, [X_{a}, X_{b}]] + i\mu\epsilon^{abc}X_{b}X_{c} + \frac{\mu^{2}}{9}X_{a} = 0$$

$$\longrightarrow \quad X_{a} = \frac{\mu}{3}J_{a}, \quad [J_{a}, J_{b}] = i\epsilon_{abc}J_{c}$$

 preserves I6 SUSY. Around it one obtains (2+1)-d SYM on noncommutative space.

Fuzzy D2 brane out of N D0 branes (R. C. Myers 1999)

• 'Lattice' is embedded in matrices.

Large-N = continuum limit

 With maximal SUSY, commutative limit of the noncommutative space is smooth. (no UV/IR mixing) (Matusis-Susskind-Toumbas '00)

(3+1)-d SYM

- 4d N=1 pure SYM : lattice chiral fermion assures SUSY (Kaplan 1984, Curci-Veneziano 1986)
- 4d N=4 :
 - again "Hybrid" formulation: Lattice + fuzzy sphere (M.H.-Matsuura-Sugino 2010, M.H. 2010)
 - •Large-N Eguchi-Kawai reduction(Ishii-Ishiki-Shimasaki-Tsuchiya, 2008)
 - •Another Matrix model approach(Heckmann-Verlinde, 2011)
 - recent analysis of 4d lattice:
 - Fine tuning is needed, but only for 3 bare lattice couplings.

(Catterall-Dzienkowski-Giedt-Joseph-Wells, 2011)

SIGN PROBLEM?

The second se

NO PROBLEM!

- SYM has the sign problem (execept for 4d N=I pure YM)
- Use the 'phase-quenched' effective action

$$S_{eff}[A] = S_B[A] - \log |\det D[A]|$$

 Phase can be taken into account by the 'phase reweighting' in principle, but usually it's hopelessly hard.

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{\int [dA] \det D \cdot e^{-S_B} \cdot \mathcal{O}}{\int [dA] \det D \cdot e^{-S_B}} \\ &= \frac{\int [dA](phase) \cdot |\det D| \cdot e^{-S_B} \cdot \mathcal{O} / \int [dA] |\det D| \cdot e^{-S_B}}{\int [dA](phase) \cdot |\det D| \cdot e^{-S_B} / \int [dA] |\det D| \cdot e^{-S_B}} \\ &= \frac{\langle (phase) \cdot \mathcal{O} \rangle_{phase \ quench}}{\langle (phase) \rangle_{phase \ quench}} \sim 0/0 \end{split}$$

Miracles happen in SYM!

- Almost no phase except for very low temperature.
- SU(2) is almost sign-free.

- (Anagnostopoulos-M.H.-Nishimura-Takeuchi 2007, Catterall-Wiseman 2008, Catterall et al 2011, Buchoff-M.H.-Matsuura, in progress.)
- Even when the phase fluctuates, phase quench (without reweight) gives right answer. ('right' in the sense it reproduces gravity prediction.)

- Matrix quantum mechanics is UV finite.
 No fine tuning!
- We don't have to use lattice. Just fix the gauge & introduce momentum cutoff! (M.H.-Nishimura-Takeuchi, 2007)

(1+1)-d SYM

4 SUSY model (dimensional redcution of 4d N=1; sign-free) has been studied extensively.

- Conservation of the supercurrents. (Sugino model) (Suzuki 2007, Kanamori-Suzuki 2008, Kadoh-Suzuki 2009)
- Comparison with analytic results at small volume & large-N behaviors. (Sugino model) (M.H.-Kanamori 2009)
- Agreement between Sugino model and Cohen-Kaplan-Katz-Unsal model. (M.H.-Kanamori 2010)

All results supports the emergence of the correct continuum limit without fine tuning.

Supercurrent conservation in the SU(2) Sugino model

Polyakov loop vs compactification radius SU(2), periodic b.c. (M.H.-Kanamori 2010)